References
- Blott, S., J. J. Kim, S. Moisio, A. Schmidt-Kuntzel, A. Cornet, P. Berzi, N. Cambisano, C. Ford, B. Grisart, D. Johnson, L. Karim, P. Simon, R. Snell, R. Spelman, J. Wong, J. Vilkki, M. Georges, F. Farnir and W. Coppieters. 2003. Molecular dissection of a quantitative trait locus: a phenylalanine-to-tyrosine substitution in the transmembrane domain of the bovine growth hormone receptor is associated with a major effect on milk yield and composition. Genetics 163:253-266.
- Druet, T. and M. Georges. 2010. A hidden markov model combining linkage and linkage disequilibrium information for haplotype reconstruction and quantitative trait locus fine mapping. Genetics 184:789-798. https://doi.org/10.1534/genetics.109.108431
- Druet, T., S. Fritz, M. Boussaha, S. Ben-Jemaa, F. Guillaume, D. Derbala, D. Zelenika, D. Lechner, C. Charon, D. Boichard, I. G. Gut, A. Eggen and M. Gautier. 2008. Fine mapping of quantitative trait loci affecting female fertility in dairy cattle on BTA03 using a dense single-nucleotide polymorphism map. Genetics 178:2227-2235. https://doi.org/10.1534/genetics.107.085035
- Garrick, D. J. 2011. The nature, scope and impact of genomic prediction in beef cattle in the United States. Genet. Sel. Evol. 43:17. https://doi.org/10.1186/1297-9686-43-17
- Hubbard, T. J., B. L. Aken, S. Ayling, B. Ballester, K. Beal, E. Bragin, S. Brent, Y. Chen, P. Clapham, L. Clarke, G. Coates, S. Fairley, S. Fitzgerald, J. Fernandez-Banet, L. Gordon, S. Graf, S. Haider, M. Hammond, R. Holland, K. Howe, A. Jenkinson, N. Johnson, A. Kahari, D. Keefe, S. Keenan, R. Kinsella, F. Kokocinski, E. Kulesha, D. Lawson, I. Longden, K. Megy, P. Meidl, B. Overduin, A. Parker, B. Pritchard, D. Rios, M. Schuster, G. Slater, D. Smedley, W. Spooner, G. Spudich, S. Trevanion, A. Vilella, J. Vogel, S. White, S. Wilder, A. Zadissa, E. Birney, F. Cunningham, V. Curwen, R. Durbin, X. M. Fernandez-Suarez, J. Herrero, A. Kasprzyk, G. Proctor, J. Smith, S. Searle and P. Flicek. 2009. Ensembl 2009. Nucleic Acids Res. 37(Database issue): D690-697. https://doi.org/10.1093/nar/gkn828
- Khatkar, M. S., F. W. Nicholas, A. R. Collins, K. R. Zenger, J. Al Cavanagh, W. Barris, R. D. Schnabel, J. F. Taylor and H. W. Raadsma. 2008. Extent of genome-wide linkage disequilibrium in Australian Holstein-Friesian cattle based on a high-density SNP panel. BMC Genomics 9:187. https://doi.org/10.1186/1471-2164-9-187
- Kim, J. J. and M. Georges. 2002. Evaluation of a new fine-mapping method exploiting linkage disequilibrium: a case study analysing a QTL with major effect on milk composition on bovine chromosome 14. Asian-Aust. J. Anim. Sci. 15: 1250-1256. https://doi.org/10.5713/ajas.2002.1250
- Lee, Y. M., C. M. Han, Y. Li, J. J. Lee, L. H. Kim, J. H. Kim, D. I. Kim, S. S. Lee, B. L. Park, H. D. Shin, K. S. Kim, N. S. Kim and J. J. Kim. 2010a. A whole genome association study to detect single nucleotide polymorphisms for carcass traits in Hanwoo populations. Asian-Aust. J. Anim. Sci. 23(4):417-424. https://doi.org/10.5713/ajas.2010.10019
- Lee, Y. M., Y. S. Lee, C. M. Han, J. H. Lee, J. S. Yeo and J. J. Kim. 2010b. Detection of quantitative trait loci for growth and carcass traits on BTA6 in a Hanwoo population. Asian-Aust. J. Anim. Sci. 23(3):287-291. https://doi.org/10.5713/ajas.2010.90586
- Lee, Y.-S., J. H. Lee, J. Y. Lee, J. J. Kim, H. S. Park and J. S. Yeo. 2008. Identification of candidate SNP (single nucleotide polymorphism) for growth and carcass traits related to QTL on chromosome 6 in Hanwoo (Korean cattle). Asian-Aust. J. Anim. Sci. 21(12):1703-1709. https://doi.org/10.5713/ajas.2008.80223
- Li Y., J. H. Lee, Y. M. Lee and J. J. Kim. 2011. Application of linkage disequilibrium mapping methods to detect QTL for carcass quality on chromosome 6 using a high dnsity SNP Map in Hanwoo. Asian-Aust. J. Anim. Sci. 24:457-462. https://doi.org/10.5713/ajas.2011.11019
- Matukumalli, L. K., C. T. Lawley, R. D. Schnabel, J. F. Taylor, M. F. Allan, M. P. Heaton, J. O'Connell, S. S. Moore, T. P. Smith, T. S. Sonstegard and C. P. Van Tassell. 2009. Development and characterization of a high density SNP genotyping assay for cattle. PLoS One 4(4):e5350. https://doi.org/10.1371/journal.pone.0005350
- McClure, M. C., N. S. Morsci, R. D. Schnabel, J. W. Kim, P. Yao, M. M. Rolf, S. D. McKay, S. J. Gregg, R. H. Chapple, S. L. Northcutt and J. F. Taylor. 2010. A genome scan for quantitative trait loci influencing carcass, post-natal growth and reproductive traits in commercial Angus cattle. Anim Genet. 41:597-607. https://doi.org/10.1111/j.1365-2052.2010.02063.x
- Meuwissen, T. H. and M. E. Goddard. 2001. Prediction of identity by descent probabilities from marker-haplotypes. Genet. Sel. Evol. 33:605-634. https://doi.org/10.1186/1297-9686-33-6-605
- Meuwissen, T. H., A. Karlsen, S. Lien, I. Olsaker and M. E. Goddard. 2002. Fine mapping of a quantitative trait locus for twinning rate using combined linkage and linkage disequilibrium mapping. Genetics 161:373-379.
- Mizoguchi, Y., T. Watanabe, K. Fujinaka, E. Iwamoto and Y. Sugimoto. 2006. Mapping of quantitative trait loci for carcass traits in a Japanese Black (Wagyu) cattle population. Anim. Genet. 37:51-54. https://doi.org/10.1111/j.1365-2052.2005.01367.x
- NIAS. 2009. Annual Research Report [http://www.nias.go.kr/](Accessed 24 August 2011).
- Setoguchi, K., M. Furuta, T. Hirano, T. Nagao, T. Watanabe, Y. Sugimoto and A. Takasuga. 2009. Cross-breed comparisons identified a critical 591-kb region for bovine carcass weight QTL (CW-2) on chromosome 6 and the Ile-442-Met substitution in NCAPG as a positional candidate. BMC Genet. 10:43.
- Sun, Y. V., A. M. Levin, E. Boerwinkle, H. Robertson and S. L. Kardia. 2006. A scan statistic for identifying chromosomal patterns of SNP association. Genet. Epidemiol. 30:627-635. https://doi.org/10.1002/gepi.20173
- Visscher, P. M. 2006. A note on the asymptotic distribution of likelihood ratio tests to test variance components. Twin Res. Hum. Genet. 9:490-495. https://doi.org/10.1375/twin.9.4.490
Cited by
- Genome-Wide Specific Selection in Three Domestic Sheep Breeds vol.10, pp.6, 2015, https://doi.org/10.1371/journal.pone.0128688
- Genome‐wide assessment of diversity and differentiation between original and modern Brown cattle populations vol.52, pp.1, 2021, https://doi.org/10.1111/age.13019