References
- Pietta, P. J. Nutr. 2000, 63, 1035.
- Rice-Evans, C. Biochem. Soc. Symp. 1995, 61, 103.
- Wang, H.; Provan, G. J.; Helliwell, K. Trends Food Sci. Tech. 2000, 11, 152. https://doi.org/10.1016/S0924-2244(00)00061-3
- McKay, D. L.; Blumberg, J. B. J. Am. Coll. Nutr. 2002, 21, 1. https://doi.org/10.1080/07315724.2002.10719187
- Souza, R. F. V.; Giovani, W. F. Redox Report. 2004, 9, 97. https://doi.org/10.1179/135100004225003897
- Frankel, E. N. J. Agric. Food Chem. 1995, 43, 890. https://doi.org/10.1021/jf00052a008
- Torreggiani, A.; Jurasekova, Z.; Sanchez-Cortes, S.; Tamba, M. J. Raman Spectroscopy 2008, 39, 265. https://doi.org/10.1002/jrs.1849
- Jovanovic, S. V.; Hara, Y.; Steenken, S.; Simic, M. G. J. Amer. Chem. Soc. 1995, 117, 9881. https://doi.org/10.1021/ja00144a014
- Jovanovic, S. V.; Steenken, S.; Simic, M. G.; Hara, Y. Flavonoids in Health and Disease; Rice-Evans, C. A., Packer, L., Eds.; Marcel Dekker, Inc.: New York, U.S.A., 1998; p 137.
- Falchuk, K. H. Mol. Cell. Biochem. 1998, 188, 41. https://doi.org/10.1023/A:1006808119862
- Aja, A.; Carol, P.; Sreejith, S. J. Am. Chem. Soc. 2005, 127, 14962. https://doi.org/10.1021/ja054149s
- Park, H. R.; Seo, J. J.; Shin, S. C.; Lee, H. S.; Bark, K. M. Bull. Korea Chem. Soc. 2007, 28, 1573. https://doi.org/10.5012/bkcs.2007.28.9.1573
- Park, H. R.; Oh, C. H.; Lee, H. C.; Lim, S. R.; Yang, K. Y.; Bark, K. M. Photochem. Photobiol. 2004, 80, 143.
- Kitano, K.; Nam, K. Y.; Kimura, S.; Fujiki, H.; Imanishi, Y. Biophys. Chem. 1997, 65, 157. https://doi.org/10.1016/S0301-4622(96)02254-5
- Hashimoto, T.; Kumazawa, S.; Nanjo, F.; Hara, Y.; Nakayama, T. Biosci. Biotechnol. Biochem. 1999, 63, 2252. https://doi.org/10.1271/bbb.63.2252
- Terao, J.; Piskula, M.; Yao, Q. Arch. Biochem. Biophys. 1994, 308, 278. https://doi.org/10.1006/abbi.1994.1039
- Bodini, M. E.; Valle, M. A.; Tapia, R.; Leighton, F.; Berrios, P. Polyhedron 2001, 20, 1005. https://doi.org/10.1016/S0277-5387(01)00762-8
- Atkins, R. C. J. Chem. Ed. 1975, 52, 550. https://doi.org/10.1021/ed052p550
- Bark, K. M.; Yeom, J. E.; Yang, J. I.; Yang, I. J.; Park, C. H.; Park, H. R. Bull. Kor. Chem. Soc. 2011, 32, 3443. https://doi.org/10.5012/bkcs.2011.32.9.3443
- Huheey, J. E.; Keiter, E. A.; Keiter, R. L. Inorganic Chemistry, 4th ed.; Harper Collins College Publishers: New York, USA, 1993; p 596.
- Lakowicz, J. R. Principles of Fluorescence Spectroscopy; Plenum Press: New York, USA, 1983; p 257.
Cited by
- Digestion Conditions vol.79, pp.10, 2014, https://doi.org/10.1111/1750-3841.12584
- Influence of catechin (flavan-3-ol) addition to breeder quail (Coturnix coturnix japonica) diets on productivity, reproductive performance, egg quality and yolk oxidative stability vol.44, pp.1, 2012, https://doi.org/10.1080/09712119.2015.1091337
- Comparison of Salt Cations in the Design of Nonionic Surfactant Based Aqueous Biphasic Systems: Application in Polyphenol Separations vol.61, pp.11, 2012, https://doi.org/10.1021/acs.jced.5b01008
- Green Tea and Struvite Crystals in Relation to Infectious Urinary Stones: The Role of (−)-Epicatechin vol.17, pp.11, 2012, https://doi.org/10.1021/acs.cgd.7b01043
- Effect of (−)-Epicatechin on Poorly Crystalline and Amorphous Precipitate. The Role of Green Tea Compound in the Formation of Infectious Urinary Stones vol.20, pp.1, 2020, https://doi.org/10.1021/acs.cgd.9b00936
- Green synthesis, characterization and antibacterial study on the catechin-functionalized ZnO nanoclusters vol.8, pp.2, 2012, https://doi.org/10.1088/2053-1591/abe255