DOI QR코드

DOI QR Code

Inversion Barriers of Methylsilole and Methylgermole Monoanions

  • Received : 2012.10.09
  • Accepted : 2012.10.24
  • Published : 2012.12.20

Abstract

Density functional MO calculations for the methylsilole anion of $[C_4H_4SiMe]^-$ and methylgermole anion of $[C_4H_4SiMe]^-$ at the B3LYP (full)/6-311+$G^*$ level (GAUSSIAN 94) were carried out and characterized by frequency analysis. The ground state structure for the methylsilole anion and methylgermole anion is that the methyl group is pyramidalized with highly localized structure. The difference between the calculated $C_{\alpha}-C_{\beta}$ and $C_{\beta}-C_{\beta}$ distances are 9.4 and 11.5 pm, respectively. The E-Me vector forms an angle of $67.9^{\circ}$ and $78.2^{\circ}$ with the $C_4E$ plane, respectively. The optimized structures of the saddle point state for the methylsilole anion and methylgermole anion have been also found as a planar with highly delocalized structure. The optimized $C_{\alpha}-C_{\beta}$ and $C_{\beta}-C_{\beta}$ distances are nearly equal for both cases. The methyl group is located in the plane of $C_4E$ ring and the angle between the E-Me vector and the $C_4E$ plane for the methylsilole anion and methylgermole anion is $2.0^{\circ}$ and $2.3^{\circ}$, respectively. The energy difference between the ground state structure and the transition state structure is only 5.1 kcal $mol^{-1}$ for the methylsilole anion. However, the energy difference of the methylgermole anion is 14.9 kcal $mol^{-1}$, which is much higher than that for the corresponding methylsilole monoanion by 9.8 kcal $mol^{-1}$. Based on MO calculations, we suggest that the head-to-tail dimer compound, 4, result from [2+2] cycloaddition of silicon-carbon double bond character in the highly delocalized transition state of 1. However, the inversion barrier for the methylgermole anion is too high to dimerize.

Keywords

References

  1. Gordon, M. S.; Boudjouk, P.; Anwari, F. J. Am. Chem. Soc. 1983, 105, 4972. https://doi.org/10.1021/ja00353a021
  2. Tamao, K.; Kawachi, A. Adv. Organomet. Chem. 1995, 38, 1. https://doi.org/10.1016/S0065-3055(08)60425-6
  3. West, R.; Sohn, H.; Bankwitz, U.; Calabrese, J.; Apelog, Y.; Mueller, T. J. Am. Chem. Soc. 1995, 117, 11608. https://doi.org/10.1021/ja00151a038
  4. West, R.; Sohn, H.; Powell, D. R.; Mueller, T.; Apeloig, Y. Angew. Chem. Int. Ed. 1996, 35, 1002. https://doi.org/10.1002/anie.199610021
  5. Freeman, W. P.; Tilley, T. D.; Yap, G. P. A.; Rheingold, A. L. Angew. Chem. Int. Ed. 1996, 35, 882. https://doi.org/10.1002/anie.199608821
  6. Freeman, W. P.; Tilley, T. D.; Liable-Sands, L. M.; Rheingold, A. L. J. Am. Chem. Soc. 1996, 118, 10457. https://doi.org/10.1021/ja962103g
  7. Hong, J.-H.; Boudjouk, P. J. Am. Chem. Soc. 1993, 115, 5883. https://doi.org/10.1021/ja00066a090
  8. Goldfuss, B.; Schleyer, P. V. R. Organometallics 1995, 14, 1553. https://doi.org/10.1021/om00004a004
  9. Tang, B. Z.; Zhan X. W.; Yu, G.; Lee, P. P. S.; Liu, Y. Q.; Zhu, D. B. J. Mater. Chem. 2001, 11, 2974. https://doi.org/10.1039/b102221k
  10. Joo, W.-C.; Hong, J.-H.; Choi, S.-B.; Son, H.-E. J. Organometal. Chem. 1990, 391, 27. https://doi.org/10.1016/0022-328X(90)80153-Q
  11. Bankwitz, U.; Sohn, H.; Powell, D. R.; West, R. J. Organometal Chem. 1995, 499, C 7. https://doi.org/10.1016/0022-328X(95)00333-L
  12. Sohn, H.; Merritt, J.; Powell, D. R.; West, R. Organometallics 1997, 16, 5133. https://doi.org/10.1021/om970680n
  13. Sohn, H.; Woo, H.-G.; Powell, D. R. Chem. Commun., 2000, 6, 697.
  14. Choi, S.-B.; Boudjouk, P.; Wei, P. J. Am. Chem. Soc. 1998, 120, 5814. https://doi.org/10.1021/ja973170t
  15. Liu, Y. X.; Stringfellow, T. C.; Ballweg, D.; Guzei, I. A.; West, R. J. Am. Chem. Soc. 2002, 124, 49. https://doi.org/10.1021/ja011821m
  16. Yamaguchi, Y. Synthetic Met. 1996, 82, 149. https://doi.org/10.1016/S0379-6779(96)03782-4
  17. Sohn, H.; Tan, R. P.; Powell, D. R.; West, R. Organometallics 1994, 13, 1390. https://doi.org/10.1021/om00016a046
  18. Yamaguchi, S.; Tamao, K. J. Chem. Soc., Dalton Trans. 1998, 3693.
  19. Yamaguchi, S.; Endo, T.; Uchida, M.; Izumizawa, T.; Furukawa, K.; Tamao, K. Chem. Eur. J. 2000, 6, 1683. https://doi.org/10.1002/(SICI)1521-3765(20000502)6:9<1683::AID-CHEM1683>3.3.CO;2-D
  20. Tamao, K.; Uchida, M.; Izumizawa, T.; Furukawa, K.; Yamaguchi, S. J. Am. Chem. Soc. 1996, 118, 11974. https://doi.org/10.1021/ja962829c
  21. Sohn, H.; Huddleston, R. R.; Powell, D. R.; West, R.; Oka, K.; Yonghua, X. J. Am. Chem. Soc. 1999, 121, 2935. https://doi.org/10.1021/ja983350i
  22. Xu, Y.; Fujino, T.; Naito, H.; Dohmaru, T.; Oka, K.; Sohn, H.; West, R. Jpn. J. Appl. Phys. 1999, 38, 6915. https://doi.org/10.1143/JJAP.38.6915
  23. Sanji, T.; Sakai, T.; Kabuto, C.; Sakurai, H. J. Am. Chem. Soc. 1998, 120, 4552. https://doi.org/10.1021/ja973252h
  24. Sohn, H.; Calhoun, R. M.; Sailor, M. J.; Trogler, W. C. Angew. Chem. Int. Ed. 2001, 11, 2104.
  25. Sohn, H.; Sailor, M. J.; Magde, D.; Trogler, W. C. J. Am. Chem. Soc. 2003, 125, 3821. https://doi.org/10.1021/ja021214e
  26. Sohn, H.; Powell, D. R.; West, R.; Hong, J.-H.; Joo, W.-C. Organometallics 1997, 16, 2770. https://doi.org/10.1021/om970177a
  27. Gaussian 94, Revision D. 3, Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Gill, P. M. W.; Johnson, B. G.; Robb, M. A.; Cheeseman, J. R.; Keith, T.; Petersson, G. A.; Montgomery, J. A.; Raghavachari, K.; Al-Laham, M. A.; Zakrzewski, V. G.; Ortiz, J. V.; Foresman, J. B.; Cioslowski, J.; Stefanov, B. B.; Nanayakkara, A.; Challacombe, M.; Peng, C. Y.; Ayala, P. Y.; Chen, W.; Wong, M. W.; Andres, J. L.; Replogle, E. S.; Gomperts, R.; Martin, R. L.; Fox, D. J.; Binkley, J. S.; Defrees, D. J.; Baker, J.; Stewart, J. P.; Head-Gordon, M.; Gonzalez, C.; Pople, J. A., Gaussian, Inc., Pittsburgh PA, 1995.

Cited by

  1. Optical Characterization of Germole Nanoaggregates and Its Explosive Sensing Application vol.73, pp.7, 2018, https://doi.org/10.3938/jkps.73.908