DOI QR코드

DOI QR Code

Effects of the Superlattices on STM Imaging of Self-organized Substituted Alkyl Chain Monolayers on a Graphite Surface

  • Son, Seung Bae (Department of Chemistry and Research Institute of Physics and Chemistry, Chonbuk National University) ;
  • Hahn, Jae Ryang (Department of Chemistry and Research Institute of Physics and Chemistry, Chonbuk National University)
  • Received : 2012.06.27
  • Accepted : 2012.09.28
  • Published : 2012.12.20

Abstract

We characterized the physisorption of p-iodo-phenyl octadecyl ether molecules (I-POE) onto superlattice regions of graphite surfaces using scanning tunneling microscopy (STM). The formation of self-organized I-POE monolayers does not affect the overall structures of moir$\acute{e}$ patterns and their modulation periods. However, the packing density of the I-POE monolayer and the orientations of lamella structures were sensitive to the underlying superlattice structure. Depending on the bias voltage, the STM images selectively showed moir$\acute{e}$ pattern, I-POE layer, or both. Reflecting the local density of states at a certain energy level, the STM images thereby revealed the relative energy level scale of the superlattice with respect to the molecular orbitals of I-POE.

Keywords

References

  1. Spong, J. K.; Mizes, H. A.; LaComb, L. J., Jr.; Dovek, M. M.; Frommer, J. E.; Foster, J. S. Nature 1989, 338, 137. https://doi.org/10.1038/338137a0
  2. Claypool, C. L.; Faglioni, F.; Goddard, W. A., III; Gray, H. B.; Lewis, N. S.; Marcus, R. A. J. Phys. Chem. B 1997, 101, 5978. https://doi.org/10.1021/jp9701799
  3. Xu, S. L.; Yin, S. X.; Liang, H. P.; Wang, C.; Wan, L. J.; Bai, C. L. J. Phys. Chem. B 2004, 108, 620. https://doi.org/10.1021/jp035425x
  4. McGonigal, G. C.; Bernhardt, R. H.; Thomson, D. J. Appl. Phys. Lett. 1990, 57, 28. https://doi.org/10.1063/1.104234
  5. Watel, G.; Thibaudau, F.; Cousty, J. Surf. Sci. 1993, 281, L297. https://doi.org/10.1016/0039-6028(93)90843-9
  6. Smith, D. P. E.; Hörber, J. K. H.; Binnig, G.; Nejoh, H. Nature 1990, 344, 641. https://doi.org/10.1038/344641a0
  7. Lindsay, S. M.; Sankey, O. F.; Li, Y.; Herbst, C.; Rupprecht, A. J. Phys. Chem. 1990, 94, 4655. https://doi.org/10.1021/j100374a053
  8. Mizutani, W.; Shigeno, M.; Ono, M.; Kajimura, K. Appl. Phys. Lett. 1990, 56, 1974. https://doi.org/10.1063/1.103015
  9. Azbel, M. Y. Phys. Rev. B 1983, 28, 4106.
  10. Lee, H. S.; Iyengar, S.; Musselman, I. H. Langmuir 1998, 14, 7475. https://doi.org/10.1021/la9712092
  11. Son, S. B.; Lee, H.; Jeon, I. C.; Park, S. K.; Hahn, J. R. J. Nanosci. Nanotechnol. 2006, 6, 2494. https://doi.org/10.1166/jnn.2006.527
  12. Mamin, H. J.; Ganz, E.; Abraham, D. W.; Thomson, R. E.; Clarke, J. Phys. Rev. B 1986. 34, 9015. https://doi.org/10.1103/PhysRevB.34.9015
  13. Soler, J. M.; Baro, A. M.; Garcia, N.; Rohrer, H. Phys. Rev. Lett. 1986, 57, 444. https://doi.org/10.1103/PhysRevLett.57.444
  14. Clemmer, C. R.; Beebe, T. P., Jr. Science 1991, 251, 640. https://doi.org/10.1126/science.1992517
  15. Chang, H.; Bard, A. J. Langmuir 1991, 7, 1143. https://doi.org/10.1021/la00054a021
  16. Hahn, J. R.; Kang, H. Phys. Rev. B 1999, 60, 6007.
  17. Hahn, J. R.; Kang, H.; Song, S.; Jeon, I. C. Phys. Rev. B 1996, 53, R1725.
  18. Hahn, J. R.; Kang, H. Surf. Sci. 1996, 357-358, 165. https://doi.org/10.1016/0039-6028(96)80075-6
  19. Banhart, F.; Kotakoski, J.; Krasheninnikov, A. V. ACS Nano 2011, 5, 26. https://doi.org/10.1021/nn102598m
  20. Xhie, J.; Sattler, K.; Ge, M.; Venkateswaran, N. Phys. Rev. B 1993, 47, 15835. https://doi.org/10.1103/PhysRevB.47.15835
  21. Sun, H. L.; Shen, Q. T.; Jia, J. F.; Zhang, Q. Z.; Xue, Q. K. Surf. Sci. 2003, 542, 94. https://doi.org/10.1016/S0039-6028(03)00949-X
  22. Rong, Z. Y.; Kuiper, P. Phys. Rev. B 1993, 48, 17427. https://doi.org/10.1103/PhysRevB.48.17427
  23. Kobayashi, K. Phys. Rev. B 1996, 53, 11091. https://doi.org/10.1103/PhysRevB.53.11091
  24. Kuwabara, M.; Clarke, D. R.; Smith, D. A. Appl. Phys. Lett. 1990, 56, 2396. https://doi.org/10.1063/1.102906
  25. Cee, V. J.; Patrick, D. L.; Beebe, T. P., Jr. Surf. Sci. 1995, 329, 141. https://doi.org/10.1016/0039-6028(95)00013-5
  26. Bernhardt, T. M.; Kaiser, B.; Rademann, K. Surf. Sci. 1998, 408, 86. https://doi.org/10.1016/S0039-6028(98)00152-6
  27. Osing, J.; Shvets, I. V. Surf. Sci. 1998, 417, 145. https://doi.org/10.1016/S0039-6028(98)00678-5
  28. Pong, W. T.; Durkan, C. Jpn. J. Appl. Phys. 2005, 44, 5365. https://doi.org/10.1143/JJAP.44.5365
  29. Pong, W. T.; Bendall, J.; Durkan, C. Surf. Sci. 2007, 601, 498. https://doi.org/10.1016/j.susc.2006.10.012
  30. Wang, Y.; Ye, Y.; Wu, K. Surf. Sci. 2006, 600, 729. https://doi.org/10.1016/j.susc.2005.12.001
  31. Rong, Z. Y. Phys. Rev. B 1994, 50, 1839. https://doi.org/10.1103/PhysRevB.50.1839
  32. Leonard, N. J.; Felley, D. L.; Nicolaides, E. D. J. Am. Chem. Soc. 1952, 74, 1700. https://doi.org/10.1021/ja01127a026
  33. Couto, M. S.; Liu, X. Y.; Meekes, H.; Bennema, P. J. Appl. Phys. 1994, 75, 627. https://doi.org/10.1063/1.355799