DOI QR코드

DOI QR Code

Loss of HCN from the Pyrimidine Molecular Ion: A Computational Study

  • Received : 2012.08.31
  • Accepted : 2012.09.25
  • Published : 2012.12.20

Abstract

The potential energy surface (PES) for the loss of HCN from the pyrimidine molecular ion has been explored using quantum chemical calculations. Possible reaction pathways to form five $C_3H_3N^{+{\bullet}}$ isomers have been obtained with Gaussian 4 model calculations. The rate constant for the HCN loss and the product branching ratio have been calculated using the Rice-Ramsperger-Kassel-Marcus theory on the basis of the obtained PES. The resultant rate constant agrees with the previous experimental result. By a kinetic analysis, it is proposed that the formation of $CH=CHC{\equiv}NH^{+{\bullet}}$ is favored near the dissociation threshold, while the formation of $CH=CHN{\equiv}CH^{+{\bullet}}$ is favored at high energies.

Keywords

References

  1. Levsen, K. In Fundamental Aspects of Organic Mass Spectrometry; Verlag Chemie: Weinheim, 1978.
  2. Busch, K. L.; Glish, G. L.; McLuckey, S. A. Mass Spectrometry/ Mass Spectrometry: Techniques and Applications of Tandem Mass Spectrometry; VCH Publishers: New York, 1988.
  3. Fati, D.; Lorquet, A. J.; Locht, R.; Lorquet, J. C.; Leyh, B. J. Phys. Chem. A 2004, 108, 9777. https://doi.org/10.1021/jp048058d
  4. Moon, J. H.; Choe, J. C.; Kim, M. S. J. Phys. Chem. A 2000, 104, 458. https://doi.org/10.1021/jp991409h
  5. Huang, F. S.; Dunbar, R. C. Int. J. Mass Spectrom. Ion Processes 1991, 109, 151. https://doi.org/10.1016/0168-1176(91)85102-R
  6. Lifshitz, C. Acc. Chem. Res. 1994, 27, 138. https://doi.org/10.1021/ar00041a004
  7. Choe, J. C. J. Phys. Chem. A 2006, 110, 7655. https://doi.org/10.1021/jp0612782
  8. Yim, M. K.; Choe, J. C. J. Phys. Chem. A 2011, 115, 3087. https://doi.org/10.1021/jp110074r
  9. Jung, S. H.; Yim, M. K.; Choe, J. C. Bull. Korean Chem. Soc. 32, 2301.
  10. NIST Chemistry WebBook, NIST Standard Reference Database Number 69.
  11. Asbrink, L.; Fridh, C.; Jonsson, B. O.; Lindholm, E. Intern. J. Mass Spectrom. Ion Phys. 1972, 8, 215. https://doi.org/10.1016/0020-7381(72)80011-1
  12. Vall-Llosera, G.; Coreno, M.; Erman, P.; Huels, M.; Jakubowska, K.; Kivimaki, A.; Rachlew, E.; Stankiewicz, M. Int. J. Mass Spectrom. 2008, 275, 55. https://doi.org/10.1016/j.ijms.2008.05.019
  13. Buff, R.; Dannacher, J. Int. J. Mass Spectrom. Ion Processes 1984, 62, 1. https://doi.org/10.1016/0168-1176(84)80065-8
  14. Lavorato, D. J.; Dargel, T. K.; Koch, W.; McGibbon, G. A.; Schwarz, H.; Terlouw, J. K. Intern. J. Mass Spectrom. 2001, 210, 43. https://doi.org/10.1016/S1387-3806(01)00410-9
  15. Ervasti, H. K.; Jobst, K. J.; Gerbaux, P.; Burgers, P. C.; Ruttink, P. J. A.; Terlouw, J. K. Chem. Phys. Let. 2009, 482, 211. https://doi.org/10.1016/j.cplett.2009.10.017
  16. Baer, T.; Hase, W. L. Unimolecular Reaction Dynamics: Theory and Experiments; Oxford University Press: New York, 1996.
  17. Curtiss, L. A.; Redfern, P. C.; Raghavachari, K. J. Chem. Phys. 2007, 126, 084108. https://doi.org/10.1063/1.2436888
  18. Frisch, M. J. T., Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G. A.; Nakatsuji, H.; Caricato, M.; Li, X.; Hratchian, H. P.; Izmaylov, A. F.; Bloino, J.; Zheng, G.; Sonnenberg, J. L.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Vreven, T.; Montgomery, J. A., Jr.; Peralta, J. E.; Ogliaro, F.; Bearpark, M.; Heyd, J. J.; Brothers, E.; Kudin, K. N.; Staroverov, V. N.; Kobayashi, R.; Normand, J.; Raghavachari, K.; Rendell, A.; Burant, J. C.; Iyengar, S. S.; Tomasi, J.; Cossi, M.; Rega, N.; Millam, N. J.; Klene, M.; Knox, J. E.; Cross, J. B.; Bakken, V.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Martin, R. L.; Morokuma, K.; Zakrzewski, V. G.; Voth, G. A.; Salvador, P.; Dannenberg, J. J.; Dapprich, S.; Daniels, A. D.; Farkas, O.; Foresman, J. B.; Ortiz, J. V.; Cioslowski, J.; Fox, D. J. Gaussian 09, revision A. 02; Gaussian, Inc., Wallingford CT, 2009.
  19. Baboul, A. G.; Curtiss, L. A.; Redfern, P. C. J. Chem. Phys. 1999, 110, 7650. https://doi.org/10.1063/1.478676
  20. Beyer, T.; Swinehart, D. R. ACM Commun. 1973, 16, 379. https://doi.org/10.1145/362248.362275
  21. Merrick, J. P.; Moran, D.; Radom, L. J. Phys. Chem. A 2007, 111, 11683. https://doi.org/10.1021/jp073974n

Cited by

  1. Isomeric signatures in the fragmentation of pyridazine and pyrimidine induced by fast ion impact vol.143, pp.4, 2015, https://doi.org/10.1063/1.4927233
  2. Dissociation of the Pyridazine Molecular Ion vol.35, pp.3, 2012, https://doi.org/10.5012/bkcs.2014.35.3.721