DOI QR코드

DOI QR Code

Improvement in Long-Term Stability and Photovoltaic Performance of UV Cured Resin Polymer Gel Electrolyte for Dye-Sensitized Solar Cell

  • Park, Geun Woo (Department of Chemistry, and Institute for Molecular Science and Fusion Technology, Kangwon National University) ;
  • Hwang, Chul Gyun (Department of R&D, Nano Convergence Practical Application Center) ;
  • Jung, Jae Won (KENSCO) ;
  • Jung, Young Mee (Department of Chemistry, and Institute for Molecular Science and Fusion Technology, Kangwon National University)
  • Received : 2012.08.21
  • Accepted : 2012.09.22
  • Published : 2012.12.20

Abstract

We introduced a new UV-cured resin polymer gel as an electrolyte for dye-sensitized solar cells (DSSCs) that is cured with UV irradiation to form a thin film of UV-cured resin polymer gel in the cells. The gel film was characterized and its potential for use as an electrolyte in DSSCs was investigated. This new UV-cured resin polymer gel was successfully applied as a gel polymer electrolyte in DSSCs overcoming the problems associated with the liquid electrolytes in typical DSSCs. The effect of ${\gamma}$-butylrolactone (GBL) on the long-term stability and photovoltaic performance in DSSCs using this UV-cured resin polymer gel electrolyte was also investigated. The results of the energy conversion efficiency, ionic conductivity and Raman spectra of the UV-cured resin polymer gel electrolyte with the addition of 6 wt % GBL to the UV-cured resin polymer electrolyte showed good long-term stability and photovoltaic performance for the DSSCs with the UV-cured polymer gel electrolyte.

Keywords

References

  1. O'Regan, B.; Gratzel, M. Nature 1991, 353, 737. https://doi.org/10.1038/353737a0
  2. Li, B.; Wang, L.; Kang, B.; Wang, P.; Qiu, Y. Sol. Energy Mater. Sol. Cells 2006, 90, 549. https://doi.org/10.1016/j.solmat.2005.04.039
  3. Mor, G. K.; Varghese, O. K.; Paulose, M.; Shankar, K.; Grimes, C. A. Sol. Energy Mater. Sol. Cells 2006, 90, 2011.
  4. Gratzel, M. Actual. Chim. 2007, 308, 57.
  5. Wang, Y. Sol. Energy Mater. Sol. Cells 2009, 93, 1167. https://doi.org/10.1016/j.solmat.2009.01.009
  6. Park, Y.; Jung, Y. M.; Sarker, S.; Lee, J.-J.; Lee, Y.; Lee, K.; Oh, J. J.; Joo, S.-W. Sol. Energy Mater. Sol. Cells 2010, 94, 857. https://doi.org/10.1016/j.solmat.2010.01.008
  7. Nakade, S.; Kanzaki, T.; Kambe, S.; Wada, Y.; Yanagida, S. Langmuir 2005, 21, 11414. https://doi.org/10.1021/la051483t
  8. Reynal, A.; Forneli, A.; Eugenia, M. F.; Antonio, S. D.; Anton, V. F.; Brian, C. O.; Emilio, P. J. Am. Chem. Soc. 2008, 130, 13558. https://doi.org/10.1021/ja800513m
  9. Kato, N.; Higuchi, K.; Tanaka, H.; Nakajima, J.; Sano, T.; Toyoda, T. Sol. Energy Mater. Sol. Cells 2011, 95, 301. https://doi.org/10.1016/j.solmat.2010.04.019
  10. Chen, H. S.; Lue, S. J.; Tung, Y. L.; Cheng, K. W.; Huang, F. Y.; Ho, K. C. J. Power Sources 2011, 196, 4162. https://doi.org/10.1016/j.jpowsour.2010.12.004
  11. Wang, P.; Zakeeruddin, S. M.; Moser, J. E.; Baker, R. H.; Gratzel, M. J. Am. Chem. Soc. 2004, 126, 7164. https://doi.org/10.1021/ja048472r
  12. Ito, S.; Zakeeruddin, S. M.; Comte, P.; Liska, P.; Kuang, D.; Gratzel, M. Nat. Photonics 2008, 2, 693. https://doi.org/10.1038/nphoton.2008.224
  13. Bandara, J.; Weerasinghe, H. Sol. Energy Mater. Sol. Cells 2005, 85, 385. https://doi.org/10.1016/j.solmat.2004.05.010
  14. Senadeera, G. K. R.; Kitamura, T.; Wada, Y.; Yanagida, S. J. Photochem. Photobiol. A Chem. 2006, 184, 234. https://doi.org/10.1016/j.jphotochem.2006.04.033
  15. Kroeze, J. E.; Hirata, N.; Schmidt-Mende, L.; Orizu, C.; Ogier, S. D.; Carr, K.; Gratzel, M.; Durrant, J. R. Adv. Funct. Mater. 2006, 16, 1832. https://doi.org/10.1002/adfm.200500748
  16. Kato, T.; Okazaki, A.; Hayase, S. J. Photochem. Photobiol. A Chem. 2006, 179, 42. https://doi.org/10.1016/j.jphotochem.2005.07.010
  17. Freitas, J. N.; Longo, C.; Nogueira, A. F.; De Paoli, M.-A. Sol. Energy Mater. Sol. Cells 2008, 92, 1110. https://doi.org/10.1016/j.solmat.2008.03.022
  18. Wu, J. H.; Lan, Z.; Lin, J. M.; Huang, M. L.; Hao, S. C.; Sato, T.; Yin, S. Adv. Mater. 2007, 19, 4006. https://doi.org/10.1002/adma.200602886
  19. Freitas, J. N.; Nogueira, A. F.; De Paoli, M.-A. J. Mater. Chem. 2009, 19, 5279. https://doi.org/10.1039/b900928k
  20. Ito, B. I.; Freitas, J. N.; De Paoli, M.-A.; Nogueira, A. F. J. Braz. Chem. Soc. 2008, 19, 688. https://doi.org/10.1590/S0103-50532008000400012
  21. Benedetti, J. E.; Gonçalves, A. D.; Formiga, A. L. B.; De Paoli, M.-A.; Li, X.; Durrant, J. R.; Nogueira, A. F. J. Power Sources 2010, 195, 1246. https://doi.org/10.1016/j.jpowsour.2009.09.008
  22. Nogueira, V. C.; Longo, C.; Nogueira, A. F.; Soto-Oviedo, M. A.; De Paoli, M.-A. J. Photochem. Photobiol. A Chem. 2006, 181, 226. https://doi.org/10.1016/j.jphotochem.2005.11.028
  23. Nogueira, A. F.; Durrant, J. R.; De Paoli, M.-A. Adv. Mater. 2001, 13, 826. https://doi.org/10.1002/1521-4095(200106)13:11<826::AID-ADMA826>3.0.CO;2-L
  24. Nakade, S.; Kanzaki, T.; Wada, Y.; Yanagida, S. Langmuir 2005, 21, 10803. https://doi.org/10.1021/la051257j
  25. Kato, T.; Okazaki, A.; Hayase, S. Chem. Commun. 2005, 363.
  26. Fukui, A.; Komiya, R.; Yamanaka, R.; Islam, A.; Han, L. Sol. Energy Mater. Sol. Cells 2006, 90, 649. https://doi.org/10.1016/j.solmat.2005.01.020
  27. Lee, C. P.; Lin, L. Y.; Vittal, R.; Ho, K. C. J. Power Sources 2011, 196, 1665. https://doi.org/10.1016/j.jpowsour.2010.08.039
  28. Lu, H. L.; Lee, Y. H.; Huang, S. T.; Su, C.; Yang, T. C. K. Sol. Energy Mater. Sol. Cells 2011, 95, 158. https://doi.org/10.1016/j.solmat.2010.02.018
  29. Wood, D. M.; Brailsford, A. D.; Dargan, P. I. Drug Test. Analysis 2011, 3, 417. https://doi.org/10.1002/dta.292
  30. Zhoua, Y.; Xianga, W.; Chena, S.; Fanga, S.; Zhoua, X.; Zhanga, J.; Lin, Y. Electrochimica Acta 2009, 54, 6645. https://doi.org/10.1016/j.electacta.2009.06.064

Cited by

  1. Fabrication of UV-curable silicone coating with high transmittance and laser-induced damage threshold for high-power laser system vol.88, pp.1, 2018, https://doi.org/10.1007/s10971-018-4807-7