DOI QR코드

DOI QR Code

Substituent Effect on the Structure and Biological Property of 99mTc-Labeled Diphosphonates: Theoretical Studies

  • Qiu, Ling (Key Laboratory of Nuclear Medicine, Ministry of Health, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine) ;
  • Lin, Jian-Guo (Key Laboratory of Nuclear Medicine, Ministry of Health, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine) ;
  • Gong, Xue-Dong (Institute for Computation in Molecular and Material Science, School of Chemical Engineering, Nanjing University of Science and Technology) ;
  • Cheng, Wen (Key Laboratory of Nuclear Medicine, Ministry of Health, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine) ;
  • Luo, Shi-Neng (Key Laboratory of Nuclear Medicine, Ministry of Health, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine)
  • Received : 2012.05.24
  • Accepted : 2012.09.21
  • Published : 2012.12.20

Abstract

Theoretical calculations based on density functional theory (DFT) were performed to study the substituent effect on the geometric and electronic structures as well as the biological behavior of technetium-99m-labeled diphosphonate complexes. Optimized structures of these complexes are surrounded by six ligands in an octahedral environment with three unpaired 4d electrons ($d^3$ state) and the optimized geometry of $^{99m}Tc$-MDP agrees with experimental data. With the increase of electron-donating substituent or tether between phosphate groups, the energy gap between frontier orbitals increases and the probability of non-radiative deactivation via d-d electron transfer decreases. The charge distribution reflects a significant ligand-to-metal electron donation. Based on the calculated geometric and electronic structures and biologic properties of $^{99m}Tc$-diphosphonate complexes, several structure-activity relationships (SARs) were established. These results may be instructive for the design and synthesis of novel $^{99m}Tc$-diphosphonate bone imaging agent and other $^{99m}Tc$-based radiopharmaceuticals.

Keywords

References

  1. Dilworth, J. R.; Parrott, S. J. Chem. Soc. Rev. 1998, 27, 43. https://doi.org/10.1039/a827043z
  2. Kodina, G. E. In Isotopes. Properties, Obtaining, Applications; Baranov, V. Y., Ed.; Atomnaya Energiya: Moscow, 2000.
  3. Mendez-Rojas, M. A.; Kharisov, B. I.; Tsivadze, A. Y. J. Coord. Chem. 2006, 59, 1. https://doi.org/10.1080/00958970500324633
  4. Jurisson, S. S.; Lydon, J. D. Chem. Rev. 1999, 99, 2205. https://doi.org/10.1021/cr980435t
  5. Pauwels, E. K.; Stokkel, M. P. Q. J. Nucl. Med. 2001, 45, 18.
  6. Bartholom, M. D.; Louie, A. S.; Valliant, J. F.; Zubieta, J. Chem. Rev. 2010, 110, 2903. https://doi.org/10.1021/cr1000755
  7. Subramanian, G.; McAfee, J. G.; Blair, R. J.; Kallfelz, F. A.; Thomas, F. D. J. Nucl. Med. 1975, 16, 744.
  8. Bevan, J. A.; Tofe, A. J.; Benedict, J. J.; Francis, M. D.; Barnett, B. L. J. Nucl. Med. 1980, 21, 961.
  9. Love, C.; Din, A. S.; Tomas, M. B.; Kalapparambath, T. P.; Palestro, C. J. Radiographics. 2003, 23, 341. https://doi.org/10.1148/rg.232025103
  10. Laznicek, M.; Laznickova, A.; Budsky, F. Nucl. Med. Commun. 1996, 17, 1016. https://doi.org/10.1097/00006231-199612000-00003
  11. Fueger, B. J.; Mitterhauser, M.; Wadsak, W.; Ofluoglu, S.; Traub, T.; Karanikas, G.; Dudczak, R.; Pirich, C. Nucl. Med. Commun. 2004, 25, 361. https://doi.org/10.1097/00006231-200404000-00008
  12. El-Mabhouh, A. A.; Angelov, C. A.; Cavell, R.; Mercer, J. R. Nucl. Med. Biol. 2006, 33, 715. https://doi.org/10.1016/j.nucmedbio.2006.06.004
  13. Palma, E.; Oliveira, B. L.; Correia, J. D.; Gano, L.; Maria, L.; Santos, I. C.; Santos, I. J. Biol. Inorg. Chem. 2007, 12, 667. https://doi.org/10.1007/s00775-007-0215-0
  14. Asikoglu, M.; Durak, F. G. Appl. Radiat. Isotopes. 2009, 67, 1616. https://doi.org/10.1016/j.apradiso.2009.04.009
  15. Guo, X. H.; Luo, S. N.; Wang, H. Y.; Zhou, L.; Xie, M. H.; Ye, W. Z.; Yang, M.; Wang, Y. Nucl. Sci. Tech. 2006, 17, 285. https://doi.org/10.1016/S1001-8042(06)60053-5
  16. Chen, C. Q.; Luo, S. N.; Lin, J. G.; Yang, M.; Ye, W. Z.; Qiu, L.; Sang, G. M.; Xia, Y. M. Nucl. Sci. Tech. 2009, 20, 302.
  17. Lin, J. G.; Luo, S. N.; Chen, C. Q.; Qiu, L.; Wang, Y.; Cheng, W.; Ye, W. Z.; Xia, Y. M. Appl. Radiat. Isotopes. 2010, 68, 1616. https://doi.org/10.1016/j.apradiso.2010.03.009
  18. Wang, Y.; Luo, S. N.; Lin, J. G.; Qiu, L.; Cheng, W.; Zhai, H. Z.; Nan, B. B.; Ye, W. Z.; Xia, Y. Y. Appl. Radiat. Isotopes. 2011, 69, 1169. https://doi.org/10.1016/j.apradiso.2011.03.045
  19. Lin, J. G.; Qiu, L.; Cheng, W.; Luo, S. N.; Ye, W. Z. Nucl. Med. Biol. 2011, 38, 619. https://doi.org/10.1016/j.nucmedbio.2010.12.005
  20. Qiu, L.; Cheng, W.; Lin, J. G.; Luo, S. N.; Xue, L. Molecules 2011, 16, 6165. https://doi.org/10.3390/molecules16086165
  21. Lin, J. G.; Qiu, L.; Cheng, W.; Luo, S. N.; Xue, L.; Zhang, S. Appl. Radiat. Isotopes. 2012, 70, 848. https://doi.org/10.1016/j.apradiso.2011.12.019
  22. Archimandritis, S. C.; Tsolis, A. K. Eur. J. Nucl. Med. 1987, 13, 134. https://doi.org/10.1007/BF00289025
  23. Lu, G. X.; Chen, H. Y. Nucl. Tech. 1999, 22, 682.
  24. Chen, K. X.; Jiang, H. L.; Ji, R. Y. Computer Aided Drug Design: Principles, Methods and Applications; Shanghai Scientific and Technology Press: Shanghai, 2000.
  25. Qiu, L.; Lin, J. G.; Ju, X. H.; Gong, X. D.; Luo, S. N. Chinese J. Chem. Phys. 2011, 24, 295.
  26. Qiu, L.; Lin, J. G.; Gong, X. D.; Ju, X. H.; Luo, S. N. B. Korean Chem. Soc. 2011, 32, 2358. https://doi.org/10.5012/bkcs.2011.32.7.2358
  27. Fan, H. J.; Hall, M. B. Organometallics 2001, 20, 5724. https://doi.org/10.1021/om010732f
  28. Safi, B.; Mertens, J.; Proft, F. D.; Alberto, R.; Geerlings, P. J. Phys. Chem. A 2005, 109, 1944. https://doi.org/10.1021/jp045448r
  29. Safi, B.; Mertens, J.; Proft, F. D.; Alberto, R.; Geerlings, P. J. Phys. Chem. A 2006, 110, 9240. https://doi.org/10.1021/jp062532t
  30. Cundari, T. R.; Grimes, T. V.; Gunnoe, T. B. J. Am. Chem. Soc. 2007, 129, 13172. https://doi.org/10.1021/ja074125g
  31. Riedel, S.; Renz, M.; Kaupp, M. Inorg. Chem. 2007, 46, 5734. https://doi.org/10.1021/ic7007039
  32. Haunschild, R.; Frenking, G. J. Organomet. Chem. 2008, 693, 3627. https://doi.org/10.1016/j.jorganchem.2008.09.007
  33. Safi, B.; Mertens, J.; Kersemans, K.; Geerlings, P. Nucl. Med. Biol. 2008, 35, 747. https://doi.org/10.1016/j.nucmedbio.2008.06.003
  34. Jia, H. M.; Fang, D. C.; Feng, Y.; Zhang, J. Y.; Fan, W. B.; Zhu, L. Theor. Chem. Account. 2008, 121, 271. https://doi.org/10.1007/s00214-008-0474-z
  35. Ess, D. H. J. Org. Chem. 2009, 74, 1498. https://doi.org/10.1021/jo802189w
  36. Saeki, M.; Sasaki, Y.; Nakai, A.; Ohashi, A.; Banerjee, D.; Scheinost, A.; Foerstendorf, H. Inorg. Chem. 2012, 51, 5814. https://doi.org/10.1021/ic3003405
  37. Jurisson, S.; Berning, D.; Jia, W.; Ma, D. S. Chem. Rev. 1993, 93, 1137. https://doi.org/10.1021/cr00019a013
  38. Subramanian, G.; McAfee, J. G.; Blair, R. J.; Mehter, A.; Connor, T. J. Nucl. Med. 1972, 13, 947.
  39. Libson, K.; Deutsch, E.; Barnett, B. L. J. Am. Chem. Soc. 1980, 102, 2476. https://doi.org/10.1021/ja00527a066
  40. Materials Studio 3.0.1; Accelrys Inc.: San Diego, CA, 2004.
  41. Rappe, A. K.; Casewit, C. J.; Colwell, K. S.; Goddard, W. A.; Skiff, W. M. J. Am. Chem. Soc. 1992, 114, 10024. https://doi.org/10.1021/ja00051a040
  42. Becke, A. D. J. Chem. Phys. 1993, 98, 5648. https://doi.org/10.1063/1.464913
  43. Lee, C.; Yang, W.; Parr, R. G. Phys. Rev. B 1988, 37, 785. https://doi.org/10.1103/PhysRevB.37.785
  44. Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Montgomery, J. A., Jr.; Vreven, T.; Kudin, K. N.; Burant, J. C.; Millam, J. M.; Iyengar, S. S.; Tomasi, J.; Barone, V.; Mennucci, B.; Cossi, M.; Scalmani, G.; Rega, N.; Petersson, G. A.; Nakatsuji, H.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Klene, M.; Li, X.; Knox, J. E.; Hratchian, H. P.; Cross, J. B.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Ayala, P. Y.; Morokuma, K.; Voth, G. A.; Salvador, P.; Dannenberg, J. J.; Zakrzewski, V. G.; Dapprich, S.; Daniels, A. D.; Strain, M. C.; Farkas, O.; Malick, D. K.; Rabuck, A. D.; Raghavachari, K.; Foresman, J. B.; Ortiz, J. V.; Cui, Q.; Baboul, A. G.; Clifford, S.; Cioslowski, J.; Stefanov, B. B.; Liu, G.; Liashenko, A.; Piskorz, P.; Komaromi, I.; Martin, R. L.; Fox, D. J.; Keith, T.; Al-Laham, M. A.; Peng, C. Y.; Nanayakkara, A.; Challacombe, M.; Gill, P. M. W.; Johnson, B.; Chen, W.; Wong, M. W.; Gonzalez, C.; Pople, J. A. Gaussian 03, Revision C.02; Gaussian, Inc.: Wallingford, CT, 2004.
  45. Hay, P. J.; Wadt, W. R. J. Chem. Phys. 1985, 82, 299. https://doi.org/10.1063/1.448975
  46. Dunning, T. H., Jr.; Hay, P. J. Modern Theoretical Chemistry, Schaefer, H. F., III, Ed.; Plenum: New York, 1976; Vol. 3, p 1.
  47. Hay, P. J.; Wadt, W. R. J. Chem. Phys. 1985, 82, 270. https://doi.org/10.1063/1.448799
  48. Mulliken, R. S. J. Chem. Phys. 1955, 23, 1833. https://doi.org/10.1063/1.1740588
  49. GaussView, release 3.0; Gaussian Inc.: Pittsburgh, PA, 2003.
  50. HyperChem, release 7.5; Hypercube Inc.: NewYork, 2003.
  51. Thomas. R. W.; Estes, G. W.; Elder, R. C.; Deutsch, E. J. Am. Chem. Soc. 1979, 101, 4581. https://doi.org/10.1021/ja00510a024
  52. Turki, M.; Daniel, C.; Stufkens, D. J. J. Am. Chem. Soc. 2001, 123, 11431. https://doi.org/10.1021/ja010782b
  53. DeLaMatter, D.; McCullough, J. J.; Calvo, C. J. Phys. Chem. 1973, 77, 1146. https://doi.org/10.1021/j100628a013
  54. Uchtman, V. A.; Gloss, R. A. J. Phys. Chem. 1972, 76, 1298. https://doi.org/10.1021/j100653a013
  55. Uchtman, V. A. J. Phys. Chem. 1972, 76, 1304. https://doi.org/10.1021/j100653a014
  56. Rasanen, J. P.; Pohjala, E.; Nikander, H.; Pakkanen, T. A. J. Phys. Chem. A 1997, 101, 5196. https://doi.org/10.1021/jp971213m
  57. Alberto, R.; Schibli, R.;,Waibel, R.; Abram,U.; Schubiger, P. A. Coord. Chem. Rev. 1999, 190-192, 901. https://doi.org/10.1016/S0010-8545(99)00128-9
  58. Schaffer, C. E. Inorg. Chim. Acta 2000, 300-302, 1035. https://doi.org/10.1016/S0020-1693(99)00599-X
  59. Pauling, L. C. In The Nature of the Chemical Bond, 3rd ed.; Cornell University Press: Ithaca, NY, 1960; p 172.
  60. Fleisch, H.; Russell, R. G. G.; Straumann, F. Nature 1966, 26, 901.
  61. Fukui, K. Theory of Orientation and Stereoselection, Reactivity and Structure, Concepts in Organic Chemistry; Springer: Berlin, 1975, Vol. 2.

Cited by

  1. Radiochemistry vol.109, pp.1460-4760, 2013, https://doi.org/10.1039/c3ic90028b
  2. Influence of the chelator structures on the stability of Re and Tc tricarbonyl complexes with iminodiacetic acid tridentate ligands: a computational study vol.22, pp.8, 2016, https://doi.org/10.1007/s00894-016-3043-8