DOI QR코드

DOI QR Code

Ab Initio Study of Mechanism of Forming Spiro-Heterocyclic Ring Compound Involving Si and Ge from Dichlorosilylene Germylidene (Cl2Si-Ge:) and Acetone

  • Liu, Dongting (School of Chemistry and Chemical Engineering, University of Jinan) ;
  • Ji, Hua (Department of Medicine, Shandong Medical College) ;
  • Lu, Xiuhui (School of Chemistry and Chemical Engineering, University of Jinan)
  • Received : 2011.11.10
  • Accepted : 2012.09.21
  • Published : 2012.12.20

Abstract

The mechanism of the cycloaddition reaction between singlet state dichlorosilylene germylidene ($Cl_2Si=Ge:$) and acetone has been investigated with B3LYP/6-$31G^*$ and B3LYP/6-$31G^{**}$ method, from the potential energy profile, we predict that the reaction has one dominant reaction pathway. The presented rule of the reaction is that the two reactants firstly form a Si-heterocyclic four-membered ring germylene through the [2+2] cycloaddition reaction. Because of the 4p unoccupied orbital of Ge atom in the Si-heterocyclic four-membered ring germylene and the ${\pi}$ orbital of acetone forming a ${\pi}{\rightarrow}p$ donor-acceptor bond, the Si-heterocyclic four-membered ring germylene further combines with acetone to form an intermediate. Because the Ge atom in the intermediate hybridizes to an $sp^3$ hybrid orbital after the transition state, then, the intermediate isomerizes to spiro-heterocyclic ring compound involving Si and Ge (P4) via a transition state.

Keywords

References

  1. Harper, W. H.; Ferrall, E. A.; Hilliard, R. K.; Stogner, S. M.; Grev, R. S.; Clouthier, D. J. J. Am. Chem. Soc. 1997, 119, 8361. https://doi.org/10.1021/ja9716012
  2. Hostutler, D. A.; Smith, T. C.; Li, H. Y.; Clouthier, D. J. J. Chem. Phys. 1999, 111, 950. https://doi.org/10.1063/1.479187
  3. Hostutler, D. A.; Clouthier, D. J.; Pauls, S. W. J. Chem. Phys. 2002, 116, 1417. https://doi.org/10.1063/1.1431274
  4. He, S. G.; Tackett, B. S.; Clouthier, D. J. J. Chem. Phys. 2004, 121, 257. https://doi.org/10.1063/1.1758699
  5. Stogner, S. M.; Grev, R. S. J. Chem. Phys. 1998, 108, 5458. https://doi.org/10.1063/1.475934
  6. Lu, X. H.; Xu, Y. H.; Yu, H. B.; Wu, W. R. J. Phys. Chem. A 2005, 109, 6970. https://doi.org/10.1021/jp0515075
  7. Lu, X. H.; Xu, Y. H.; Shi, L. Y.; Han, J. F.; Lian, Z. X. J. Organomet Chem. 2009, 694, 4062. https://doi.org/10.1016/j.jorganchem.2009.08.023
  8. Lee, C.; Yang, W.; Parr, R. G. Phys. Rev. B 1988, 37, 785. https://doi.org/10.1103/PhysRevB.37.785
  9. Fukui, K. J. Phys. Chem. 1970, 74, 4161. https://doi.org/10.1021/j100717a029
  10. Ishida, K.; Morokuma, K.; Komornicki, A. J. Chem. Phys. 1981, 66, 2153.