DOI QR코드

DOI QR Code

Supercapacitive Properties of Co-Ni Mixed Oxide Electrode Adopting the Nickel Foam as a Current Collector

  • Cho, Hyeon Woo (Department of Applied Chemistry and Biotechnology, Hanbat National University) ;
  • Nam, Ji Hyun (Department of Applied Chemistry and Biotechnology, Hanbat National University) ;
  • Park, Jeong Ho (Department of Applied Chemistry and Biotechnology, Hanbat National University) ;
  • Kim, Kwang Man (Research Team of Power Control Devices, Electronics and Telecommunication Research Institute) ;
  • Ko, Jang Myoun (Department of Applied Chemistry and Biotechnology, Hanbat National University)
  • Received : 2012.08.27
  • Accepted : 2012.09.07
  • Published : 2012.12.20

Abstract

Three-dimensional porous nickel foam was used as a current collector to prepare a Co-Ni oxide/Ni foam electrode for a supercapacitor. The synthesized Co-Ni oxide was proven to consist of mixed oxide phases of $Co_3O_4$ and NiO. The Co-Ni oxide/Ni foam electrode prepared was characterized by morphological observation, crystalline property analysis, cyclic voltammetry, and impedance spectroscopy. Cyclic voltammetry for the electrode showed high specific capacitances, such as 936 F $g^{-1}$ at 5 mV $s^{-1}$ and 566 F $g^{-1}$ at 200 mV $s^{-1}$, and a comparatively good cycle performance. These improved results were mainly due to the dimensional stability of the nickel foam and its high electrical contact between the electrode material and the current collector substrate.

Keywords

References

  1. Lee, B. J.; Sivakkumar, S. R.; Ko, J. M.; Kim, J. H.; Jo, S. M.; Kim, D. Y. J. Power Sources 2007, 168, 546. https://doi.org/10.1016/j.jpowsour.2007.02.076
  2. Song, R. Y.; Park, J. H.; Sivakkumar, S. R.; Kim, S. H.; Ko, J. M.; Park, D.-Y.; Jo, S. M.; Kim, D. Y. J. Power Sources 2007, 166, 29.
  3. Ryu, K. S.; Jeong, S. K.; Joo, J.; Kim, K. M. J. Phys. Chem. B 2007, 111, 731. https://doi.org/10.1021/jp064243a
  4. Kim, I.-H.; Kim, J.-H.; Lee, Y.-H.; Kim, K.-B. J. Electrochem. Soc. 2005, 152, A2170. https://doi.org/10.1149/1.2041147
  5. Hu, C.-C.; Chang, K.-H.; Lin, M.-C.; Wu, Y.-T. Nano Lett. 2006, 6, 2690. https://doi.org/10.1021/nl061576a
  6. Sugimoto, W.; Iwata, H.; Yokoshima, K.; Murakami, Y.; Takasu, Y. J. Phys. Chem. B 2005, 109, 7330. https://doi.org/10.1021/jp044252o
  7. Chang, K.-H.; Hu, C.-C. Appl. Phys. Lett. 2006, 88, 193102. https://doi.org/10.1063/1.2200154
  8. Ke, Y.-F.; Tsai, D.-S.; Huang, Y.-S. J. Mater. Chem. 2005, 15, 2122. https://doi.org/10.1039/b502754c
  9. Liu, K. C.; Anderson, M. A. J. Electrochem. Soc. 1996, 143, 124. https://doi.org/10.1149/1.1836396
  10. Srinivasan, V.; Weidner, J. W. J. Electrochem. Soc. 1997, 144, L210. https://doi.org/10.1149/1.1837859
  11. Nam, K.-W.; Kim, K.-B. J. Electrochem. Soc. 2002, 149, A346. https://doi.org/10.1149/1.1449951
  12. Lee, S.-H.; Tracy, C. E.; Pitts, J. R. Electrochem. Solid-State Lett. 2004, 7, A299. https://doi.org/10.1149/1.1786233
  13. Prasad, K. R.; Miura, N. Appl. Phys. Lett. 2004, 85, 4199. https://doi.org/10.1063/1.1814816
  14. Lin, C.; Ritter, J. A.; Popov, B. N. J. Electrochem. Soc. 1998, 145, 4097. https://doi.org/10.1149/1.1838920
  15. Liu, T.-C.; Pell, W. G.; Conway, B. E. Electrochim. Acta 1999, 44, 2829. https://doi.org/10.1016/S0013-4686(99)00002-X
  16. Srinivasan, V.; Weidner, J. W. J. Power Sources 2002, 108, 15. https://doi.org/10.1016/S0378-7753(01)01012-6
  17. Cao, L.; Lu, M.; Li, H.-L. J. Electrochem. Soc. 2005, 152, A871. https://doi.org/10.1149/1.1883354
  18. Shinde, V. R.; Mahadik, S. B.; Gujar, T. P., Lokhande, C. D. Appl. Surf. Sci. 2006, 252, 7487. https://doi.org/10.1016/j.apsusc.2005.09.004
  19. Kandalkar, S. G.; Gunjakar, J. L.; Lokhande, C. D. Appl. Surf. Sci. 2008, 254, 5540. https://doi.org/10.1016/j.apsusc.2008.02.163
  20. Hu, C. C.; Lee, Y. S.; Wen, T. C. Mater. Chem. Phys. 1997, 48, 246. https://doi.org/10.1016/S0254-0584(96)01896-2
  21. Hu, C. C.; Cheng, C. Y. Electrochem. Solid-State Lett. 2002, 5, A43. https://doi.org/10.1149/1.1448184
  22. Chen, J.; Bradhurst, D. H.; Dou, S. X.; Liu, H. K. J. Electrochem. Soc. 1999, 146, 3606. https://doi.org/10.1149/1.1392522
  23. Metzger, W.; Westfall, R.; Hermann, A.; Lyman, P. Intern. J. Hydrogen Energy 1998, 23, 1025. https://doi.org/10.1016/S0360-3199(98)00019-6
  24. Yan, D.; Cui, W. J. Alloys Comp. 1999, 293-295, 780. https://doi.org/10.1016/S0925-8388(99)00462-4
  25. Bispo-Fonseca, I.; Aggar, J.; Sarrazin, C.; Simon, P.; Fauvarque, J. F. J. Power Sources 1999, 79, 238. https://doi.org/10.1016/S0378-7753(99)00175-5
  26. Fan, Z.; Chen, J.; Cui, K.; Sun, F.; Xu, Y.; Kuang, Y. Electrochim. Acta 2007, 52, 2959. https://doi.org/10.1016/j.electacta.2006.09.029
  27. He, K.-X.; Wu, Q.-F.; Zhang, X.; Wang, X.-L. J. Electrochem. Soc. 2006, 153, A1568. https://doi.org/10.1149/1.2208735
  28. Svegl, F.; Orel, B.; Hutchins, M. G.; Kalcher, K. J. Electrochem. Soc. 1996, 143, 1532. https://doi.org/10.1149/1.1836675
  29. Bouessay, I.; Rougier, A.; Tarascon, J.-M. J. Electrochem. Soc. 2004, 151, H145. https://doi.org/10.1149/1.1731584
  30. Nam, K.-W.; Lee, E.-S.; Kim, J.-H.; Lee, Y.-H.; Kim, K.-B. J. Electrochem. Soc. 2005, 152, A2123. https://doi.org/10.1149/1.2039647
  31. Wen, T.-C.; Hu, C.-C.; Lee, Y.-J. J. Electrochem. Soc. 1993, 140, 2554. https://doi.org/10.1149/1.2220861
  32. Yoon, Y. I.; Kim, K. M.; Ko, J. M. J. Korean Ceram. Soc. 2008, 45, 368. https://doi.org/10.4191/KCERS.2008.45.6.368

Cited by

  1. Supercapacitive properties of activated carbon electrode in potassium-polyacrylate hydrogel electrolytes vol.46, pp.5, 2016, https://doi.org/10.1007/s10800-016-0927-3
  2. Fabrication and characterisation of a mixed oxide-covered mesh electrode composed of NiCo2O4 and its capability of generating hydroxyl radicals during the oxygen evolution reaction in electrolyte-free water pp.1433-0768, 2017, https://doi.org/10.1007/s10008-017-3815-9
  3. Nanosheets on Ni Foam for Hybrid Supercapacitors with High Electrochemical Performance vol.165, pp.5, 2018, https://doi.org/10.1149/2.0411805jes