DOI QR코드

DOI QR Code

Preparation of Highly Stabilized Silver Nanopowders by the Thermal Reduction and Their Properties

  • Kim, Kyoung-Young (Department of Nanobiomedical Science & WCU Research Center, Dankook University Graduate School) ;
  • Gong, Myoung-Seon (Department of Nanobiomedical Science & WCU Research Center, Dankook University Graduate School) ;
  • Park, Chan-Kyo (Department of Applied Chemical Engineering, Dankook University)
  • Received : 2012.08.10
  • Accepted : 2012.09.06
  • Published : 2012.12.20

Abstract

Silver nanopowders were prepared from silver 2-ethylhexylcarbamate (Ag-EHCB) complexes by simple thermal reduction at $85^{\circ}C$ without any reducing agent in organic solvent. 2-Ethylhexylammonium 2-ethylhexylcarbamate (EHAEHC) was investigated in terms of their abilities to stabilize the silver nanoparticles (Ag-NPs) and its subsequent effects on the preventing aggregation between Ag-NPs. Conditions (concentration of stabilizer and reaction time) used to reduce Ag-EHCB complex were systematically varied to determine their effects on the sizes of Ag-NPs. The formation of the stabilized Ag-NPs were easily monitored by UV-vis spectroscopy and characterized by TGA, TEM, SEM and XRD. When EHAEHC was used as a stabilizer, Ag-NPs of 10-30 nm in diameter were easily obtained in high yield. Silver patterns were obtained from a silver nano-paste by heat treatment at $200^{\circ}C$ in air and were found to have resistivity values of $2.9{\times}10^{-8}\;{\Omega}{\cdot}m$.

Keywords

References

  1. Lee, P. C.; Meisel, D. J. Phys. Chem. 1982, 86, 3391. https://doi.org/10.1021/j100214a025
  2. Imahori, H.; Kashiwagi, Y.; Hanada, Y.; Endo, Y.; Nishimura, Y.; Yamazaki, I.; Fukuzumi, S. J. Mater. Chem. 2003, 13, 2890. https://doi.org/10.1039/b309588f
  3. Sun, Y.; Mayers, B.; Xia, Y. Nano Lett. 2003, 3, 675. https://doi.org/10.1021/nl034140t
  4. Turkevich, J.; Stevenson, P. C.; Hiller, J. Discuss. Farasay Soc. 1951, 11, 55. https://doi.org/10.1039/df9511100055
  5. Sondi, I.; Goia, D. V.; Matijeviæ, E. J. Colloid Interface Sci. 2003, 260, 75. https://doi.org/10.1016/S0021-9797(02)00205-9
  6. Evanoff, D. D., Jr.; Chumanov, G. J. Phys. Chem. B 2004, 108, 13948. https://doi.org/10.1021/jp047565s
  7. Kats, H.; Bao, Z.; Gilat, S. Acc. Chem. Res. 2001, 34, 359. https://doi.org/10.1021/ar990114j
  8. Dimitrakopoulos, C. D.; Malenfant, P. R. L. Adv. Mater. 2002, 14, 99. https://doi.org/10.1002/1521-4095(20020116)14:2<99::AID-ADMA99>3.0.CO;2-9
  9. Ong, B. S.; Wu, Y.; Liu, P.; Gardner, S. J. Am. Chem. Soc. 2004, 126, 3378. https://doi.org/10.1021/ja039772w
  10. Ong, B. S.; Wu, Y.; Liu, P.; Jiang, L.; Murti, K. Synth. Met. 2004, 142, 49. https://doi.org/10.1016/j.synthmet.2003.07.004
  11. Li, Y.; Wu, Y.; Ong, B. S. J. Am. Chem. Soc. 2005, 127, 3266. https://doi.org/10.1021/ja043425k
  12. Sirringhaus, H.; Tessler, N.; Friends, R. H. Science 1998, 280, 1741. https://doi.org/10.1126/science.280.5370.1741
  13. Sirringhaus, H.; Kawasem, T.; Friend, R. H.; Shimoda, T.; Inbasekaran, M.; Wu, W.; Woo, E. P. Science 2000, 290, 2123. https://doi.org/10.1126/science.290.5499.2123
  14. Lee, P. C.; Meisel, D. J. Phys. Chem. 1982, 86, 3391. https://doi.org/10.1021/j100214a025
  15. Nickel, U.; Castell, A.; Pöppl, K.; Shirtcliffe, N. Langmuir 2000,16, 9087. https://doi.org/10.1021/la000536y
  16. Sondi, L.; Matijevi , D. V. E. J. Colloid Interface Sci. 2003, 260, 75. https://doi.org/10.1016/S0021-9797(02)00205-9
  17. Van Hyning, D. L.; Zukoski, C. F. Langmuir 1998, 14, 7034. https://doi.org/10.1021/la980325h
  18. Rodriguez-Gattorno, G.; Diaz, D.; Rendon, L.; Hernandes-Segura, G. O. J. Phys. Chem. B 1982, 106, 2482.
  19. Dell'Amico, D. B.; Calderazzo, F.; Labella, L.; Marchetti, F.; Pampaloni, G. Chem. Rev. 2003, 103, 3857. https://doi.org/10.1021/cr940266m
  20. Park, M. S.; Lim, T. H.; Jeon, Y. M.; Kim, J. G.; Joo, S. W.; Gong, M. S. J. Colloid Interface Sci. 2008, 321, 60. https://doi.org/10.1016/j.jcis.2008.01.053
  21. Abe, K.; Hanada, T.; Yoshida, Y.; Tanigaki, N.; Takiguchi, H.; Nagasawa, H.; Nakamoto, T.; Yamaguchi, K.; Yase, K. Thin Solid Films 1998, 524, 327.
  22. Yamamoto, M.; Nakamoto, M. J. Mater. Chem. 2003, 13, 2064. https://doi.org/10.1039/b307092a
  23. Dearden, A. L.; Smith, P. J.; Shin, D. Y.; Reis, N.; Derby, B.; O'Brienl, P. Macromol. Rapid Commun. 2005, 26, 315. https://doi.org/10.1002/marc.200400445
  24. Grodzicki, A.; Lakomska, I.; Piszczek, P.; Szymanska, I.; Sz yk, E. Coordination Chem. Rev. 2005, 249, 2232. https://doi.org/10.1016/j.ccr.2005.05.026
  25. Liu, X.; Luc, S.; Zhang, J.; Cao, W.; Thermochim. Acta 2006, 440, 1. https://doi.org/10.1016/j.tca.2005.08.030
  26. Kashiwagi, Y.; Yamamoto, M.; Nakamoto, M. J. Colloid Interface Sci. 2006, 300, 169. https://doi.org/10.1016/j.jcis.2006.03.041
  27. Hong, H. K.; Gong, M. S.; Park, C. K. Bull. Korean Chem. Soc. 2009, 30, 2669. https://doi.org/10.5012/bkcs.2009.30.11.2669
  28. Park, H. S.; Park, H. S.; Gong, M. S. Bull. Korean Chem. Soc. 2010, 31, 2575. https://doi.org/10.5012/bkcs.2010.31.9.2575
  29. Park, H. S.; Park, H. S.; Gong, M. S. Macromol. Res. 2010, 18, 897. https://doi.org/10.1007/s13233-010-0913-2
  30. Park, H. S.; Shin, U. S.; Kim, H. W.; Gong, M. S. Bull. Korean Chem. Soc. 2011, 32, 273. https://doi.org/10.5012/bkcs.2011.32.1.273
  31. Hong, H. K.; Shin, U. S.; Kim, H. W.; Gong, M. S. Bull. Korean Chem. Soc. 2011, 32, 1583. https://doi.org/10.5012/bkcs.2011.32.5.1583
  32. Park, H. S.; Gong, M. S. Bull. Korean Chem. Soc. 2012, 33, 483. https://doi.org/10.5012/bkcs.2012.33.2.483
  33. Alessio, R.; Dell'Amico, D. B.; Calderazzo, F.; Englert, U.; Guarini, A.; Labella, L.; Strasser, P. Helv. Chim. Acta 1998, 81, 219. https://doi.org/10.1002/hlca.19980810204
  34. Hong, H. K.; Park, C. K.; Gong, M. S. Bull. Korean Chem. Soc. 2010, 31, 1252. https://doi.org/10.5012/bkcs.2010.31.5.1252
  35. Park, H. S.; Park, H. S.; Gong, M. S. Polymer (Korea) 2010, 34, 144.
  36. McGhee, W. D.; Riley, D.; Christ, K.; Pan, Y.; Parnas, B. J. Org. Chem. 1995, 60, 2820. https://doi.org/10.1021/jo00114a035
  37. Hampe, E. M.; Rudkevich, D. M. Tetrahedron 2003, 59, 9619. https://doi.org/10.1016/j.tet.2003.09.096

Cited by

  1. Silver loading on poly(ethylene terephthalate) fabrics using silver carbamate via thermal reduction vol.23, pp.6, 2015, https://doi.org/10.1007/s13233-015-3069-2
  2. Preparation of Zinc Oxide Nanoparticles at Low Temperature Using New Organometallic Zinc Carbamate Precursor vol.36, pp.5, 2015, https://doi.org/10.1002/bkcs.10281
  3. Thermal decomposition of metal N,N-dialkylcarbamates vol.123, pp.2, 2016, https://doi.org/10.1007/s10973-015-5053-7
  4. Crosslinked polymer embedded Cu/Ag for comparative drug adsorption and kinetics evaluation vol.65, pp.6, 2016, https://doi.org/10.1080/00914037.2015.1119684
  5. Preparation of silver-coated silk fabrics with antibacterial activity using silver carbamate and hydrogen reduction vol.25, pp.8, 2017, https://doi.org/10.1007/s13233-017-5087-8
  6. Facile preparation of antibacterial, highly elastic silvered polyurethane nanofiber fabrics using silver carbamate and their dermal wound healing properties vol.31, pp.7, 2017, https://doi.org/10.1177/0885328216687665
  7. Investigation of the antimicrobial and wound healing properties of silver nanoparticle-loaded cotton prepared using silver carbamate pp.1746-7748, 2017, https://doi.org/10.1177/0040517516688630
  8. Fast and low-temperature sintering of silver complex using oximes as a potential reducing agent for solution-processible, highly conductive electrodes vol.25, pp.46, 2012, https://doi.org/10.1088/0957-4484/25/46/465706
  9. Surface Modification of Polyester Fibers by Thermal Reduction with Silver Carbamate Complexes vol.17, pp.8, 2012, https://doi.org/10.1007/s12221-016-5786-3
  10. All Solution-Processed Polymer Light-Emitting Diodes vol.27, pp.5, 2012, https://doi.org/10.7735/ksmte.2018.27.5.446
  11. Facile Fabrication of Highly Conductive, Ultrasmooth, and Flexible Silver Nanowire Electrode for Organic Optoelectronic Devices vol.11, pp.45, 2012, https://doi.org/10.1021/acsami.9b13132