DOI QR코드

DOI QR Code

Effect of Microwave Irradiation on Morphology and Size of Anatase Nano Powder: Efficient Photodegradation of 4-Nitrophenol by W-doped Titania

  • Received : 2012.07.12
  • Accepted : 2012.09.05
  • Published : 2012.12.20

Abstract

Anatase nanocrystalline and its tungsten-doped (0.4, 2, and 4 mol %) powders have been synthesized by microwave irradiation through hydrolysis of titanium tetra-isopropoxide (TIP) in aqueous solution. The materials are characterized by XRD, Raman, SEM-EDX, TEM, FT-IR and UV-vis techniques. The nanocrystalline $TiO_2$ particles are 30 nm in nature and doping of tungsten ion decreases their size. As seen in TEM images, the crystallites of W (4 mol %) doped $TiO_2$ are small with a size of about 10 nm. The photocatalytic activity was tested on the degradation of 4-nitrophenol (4-NP). Catalytic activities of W-doped and pure $TiO_2$ were also compared. The results show that the photocatalytic activity of the W-doped $TiO_2$ photocatalyst is much higher than that of pure $TiO_2$. Degradation decreases from 96 to 50%, during 115 min, when the initial 4-NP concentration increases from 10 to 120 ppm. Maximum degradation was obtained at 35 mg of photocatalyst.

Keywords

References

  1. Palmisano, V.; Augugliaro, L.; Sclafani, A.; Schiavello, M. J. Phys. Chem. 1988, 92, 6710. https://doi.org/10.1021/j100334a044
  2. Luo, H.; Takata, T.; Lee, Y.; Zhao, J.; Domen, K.; Yan, Y. Chem. Mater. 2004, 16, 846. https://doi.org/10.1021/cm035090w
  3. Fox, M. A.; Dulay, M. T. Chem. Rev. 1993, 93, 341. https://doi.org/10.1021/cr00017a016
  4. Kominami, H.; Kato, J.-I.; Murakami, S.-Y.; Kera, Y.; Inoue, M.; Inui, T.; Ohtani, B. J. Mol. Catal. A Chem. 1999, 144, 165. https://doi.org/10.1016/S1381-1169(98)00350-1
  5. Rao, M. V.; Rajeshwar, K.; Pai Verneker, V. R.; DuBow, J. J. Phys. Chem. 1980, 84, 1987. https://doi.org/10.1021/j100452a023
  6. Scolan, A.; Sanchez, C. Chem. Mater. 1998, 10, 3217. https://doi.org/10.1021/cm980322q
  7. Wu, M.; Long, J.; Huang, A.; Luo, Y.; Feng, Sh.; Xu, R. Langmuir 1999, 15, 8822. https://doi.org/10.1021/la990514f
  8. Wu, M.; Lin, G.; Chen, D.; Wang, G.; He, D.; Feng, S.; Xu, R. Chem. Mater. 2002, 14, 1974. https://doi.org/10.1021/cm0102739
  9. Yang, S.; Gao, L. J. Am. Ceram. Soc. 2005, 88, 968. https://doi.org/10.1111/j.1551-2916.2005.00151.x
  10. Zhu, H. Y.; Lan, Y.; Gao, X. P.; Ringer, S. P.; Zheng, Z. F.; Song, D. Y.; Zhao, J. C. J. Am. Chem. Soc. 2005, 127, 6730. https://doi.org/10.1021/ja044689+
  11. Colon, G.; Hidalgo, M. C.; Navio, J. A. Catal. Today 2002, 76, 91. https://doi.org/10.1016/S0920-5861(02)00207-9
  12. Ozer, R. R.; Ferry, J. L. Environ. Sci. Technol. 2001, 35, 3242. https://doi.org/10.1021/es0106568
  13. Hoffmann, M. R.; Martin, S. T.; Choi, W.; Bahnemann, D. Chem. Rev. 1995, 95, 69. https://doi.org/10.1021/cr00033a004
  14. Fernandez-García, M.; Martinez-Arias, A.; Hanson, J. C.; Rodriguez, J. A. Chem. Rev. 2004, 104, 4063. https://doi.org/10.1021/cr030032f
  15. Yamamoto, T.; Wada, Y.; Yin, H.; Sakata, T.; Mori, H.; Yanagida, S. Chem. Lett. 2002, 964.
  16. Hart, J. N.; Cervini, R.; Cheng, Y.-B.; Simon, G. P.; Spiccia, L. Sol. Energy Mater. Sol. Cells 2004, 84, 135. https://doi.org/10.1016/j.solmat.2004.02.041
  17. Komarneni, S.; Rajha, R. K.; Katsuki, H. Mat. Chem. Phys. 1999, 61, 50. https://doi.org/10.1016/S0254-0584(99)00113-3
  18. Tian, H.; Ma, J.; Li, K.; Li, J. Mater. Chem. Phys. 2008, 112, 47. https://doi.org/10.1016/j.matchemphys.2008.05.005
  19. Fallah Shojaie, A.; Loghmani, M. H. Chem. Eng. J. 2010, 157, 263. https://doi.org/10.1016/j.cej.2009.12.025
  20. Fallah Moafi, H.; Fallah Shojaie, A.; Zanjanchi, M. A. Appl. Surf. Sci. 2010, 256, 4310. https://doi.org/10.1016/j.apsusc.2010.02.022
  21. Fallah Moafi, H.; Fallah Shojaie, A.; Zanjanchi, M. A. Chem. Eng. J. 2011, 166, 413. https://doi.org/10.1016/j.cej.2010.10.074
  22. Rezvani, M. A.; Fallah Shojaie, A.; Loghmani, M. H. Catal. Commun. 2012, 25, 36. https://doi.org/10.1016/j.catcom.2012.04.007
  23. Nair, J.; Nair, P.; Mizukami, F.; Oosawa, Y.; Okubo, T. Mater. Res. Bull. 1999, 34, 1275. https://doi.org/10.1016/S0025-5408(99)00113-0
  24. Hsien, Y. H.; Chang, C. F.; Chen, Y. H.; Cheng, S. Appl. Catal. B: Environ. 2001, 31, 241. https://doi.org/10.1016/S0926-3373(00)00283-6
  25. Ohsaka, T.; Izumi, F.; Fujiki, Y. J. Raman Spectroscopy 1978, 7, 321. https://doi.org/10.1002/jrs.1250070606
  26. Chan, S. S.; Wachs, I. E.; Murrell, L. L.; Wang, L.; Hall, W. K. J. Phys. Chem. 1984, 88, 5831. https://doi.org/10.1021/j150668a018
  27. Daniel, M. F.; Desbat, B.; Lassegues, J.; Gerand, B.; Figlarz, M. J. Solid State Chem. 1987, 67, 235. https://doi.org/10.1016/0022-4596(87)90359-8
  28. Furusawa, T.; Honda, K.; Ukaji, E.; Sato, M.; Suzuki, N. Mater. Res. Bull. 2008, 43, 946. https://doi.org/10.1016/j.materresbull.2007.04.031

Cited by

  1. Solid Solutions vol.118, pp.51, 2014, https://doi.org/10.1021/jp507843c
  2. Synthesis and characterization of RuO2@ZrO2 core–shell nano particles as heterogeneous catalyst for oxidation of benzylic alcohols in different conditions vol.13, pp.5, 2016, https://doi.org/10.1007/s13738-015-0794-6
  3. Study the structure and performance of thermal/plasma modified Au nanoparticle-doped TiO2 photocatalyst vol.28, pp.26, 2012, https://doi.org/10.1142/s021798491450208x
  4. Synthesis, characterization and study of catalytic activity of Silver doped ZnO nanocomposite as an efficient catalyst for selective oxidation of benzyl alcohol vol.127, pp.3, 2015, https://doi.org/10.1007/s12039-015-0795-0
  5. Comparison of selective oxidation of aromatic alcohols using copper(II) chromite-titanium dioxide nanocomposite at reflux, light irradiation, and microwave conditions vol.47, pp.9, 2012, https://doi.org/10.1080/24701556.2017.1284093
  6. Study of the effect of microwave holding time on the physicochemical properties of titanium oxide vol.6, pp.8, 2019, https://doi.org/10.1088/2053-1591/ab1a0b