References
- Mohapatra, M.; Anand, S. Int. J. Eng. Sci. Tech. 2011, 2, 127.
- Mohapatra, S.; Pramanik, N.; Mukherjee, S.; Ghosh, S. K.; Pramanik, P. J. Mater. Sci. 2007, 42, 7566. https://doi.org/10.1007/s10853-007-1597-7
- Can, K.; Ozmen, M.; Ersoz, M. Colloids Surf. B. Biointerfaces 2009, 71, 154. https://doi.org/10.1016/j.colsurfb.2009.01.021
- Hu, B.; Pan, J.; Yu, H. L.; Liu, J. W.; Xu, J. H. Process Biochem. 2009, 44, 1019. https://doi.org/10.1016/j.procbio.2009.05.001
- Shaw, S. Y.; Chen, Y. J.; Ou, J. J.; Ho, L. Enzyme Microb. Technol. 2006, 39, 1089. https://doi.org/10.1016/j.enzmictec.2006.02.025
- Tang, T.; Fan, H.; Ai, S.; Han, R.; Qiu, Y. Chemosphere 2011, 83, 255. https://doi.org/10.1016/j.chemosphere.2010.12.075
- Ansari, F.; Grigoriev, P.; Libor, S.; Tothill, I. E.; Ramsden, J. J. Biotechnol. Bioeng. 2009, 102, 1505. https://doi.org/10.1002/bit.22161
- Huang, Y. F.; Wang, Y. F.; Yan, X. P. Environ. Sci. Technol. 2010, 44, 7908. https://doi.org/10.1021/es102285n
- Li, Y. G.; Gao, H. S.; Li, W. L.; Xing, J. M.; Liu, H. Z. Bioresour. Technol. 2009, 100, 5092. https://doi.org/10.1016/j.biortech.2009.05.064
- Zahavy, E.; Ber, R.; Gur, D.; Abramovich, H.; Freeman, E.; Maoz, S.; Yitzhaki, S. Adv. Exp. Med. Biol. 2012, 733, 23. https://doi.org/10.1007/978-94-007-2555-3_3
- Viota, J. L.; Arroyo, F. J.; Delgado, A. V.; Horno, J. J. Colloid Interface Sci. 2010, 344, 144. https://doi.org/10.1016/j.jcis.2009.11.061
- Singh, N.; Jenkins, G. J.; Asadi, R.; Doak, S. H. Nano Rev. 2010, 1, 5358.
- Berry, C. C.; Wells, S.; Charles, S.; Curtis, A. S. G. Biomaterials 2003, 24, 4551. https://doi.org/10.1016/S0142-9612(03)00237-0
- Berry, C. C.; Wells, S.; Charles, S.; Aitchison, G.; Curtis, A. S. G. Biomaterials 2004, 25, 5405. https://doi.org/10.1016/j.biomaterials.2003.12.046
- Gupta, A. K.; Gupta, M. Biomaterials 2005, 26, 1565. https://doi.org/10.1016/j.biomaterials.2004.05.022
- Pisanic, T. R., 2nd; Blackwell, J. D.; Shubayev, V. I.; Finones, R. R.; Jin, S. Biomaterials 2007, 28, 2572. https://doi.org/10.1016/j.biomaterials.2007.01.043
- Muller, K.; Skepper, J. N.; Posfai, M.; Trivedi, R.; Howarth, S.; Corot, C.; Lancelot, E.; Thompson, P. W.; Brown, A. P.; Gillard, J. H. Biomaterials 2007, 28, 1629. https://doi.org/10.1016/j.biomaterials.2006.12.003
- Karlsson, H. L.; Gustafsson, J.; Cronholm, P.; Moller, L. Toxicol. Lett. 2009, 188, 112. https://doi.org/10.1016/j.toxlet.2009.03.014
- Cengelli, F.; Maysinger, D.; Tschudi-Monnet, F.; Montet, X.; Corot, C.; Petri-Fink, A.; Hofmann, H.; Juillerat-Jeanneret, L. J. Pharmacol. Exp. Ther. 2006, 318, 108. https://doi.org/10.1124/jpet.106.101915
- Mahmoudi, M.; Simchi, A.; Imani, M.; Shokrgozar, M. A.; Milani, A. S.; Hafeli, U. O.; Stroeve, P. Colloids Surf. B. Biointerfaces 2010, 75, 300. https://doi.org/10.1016/j.colsurfb.2009.08.044
- Gupta, A. K.; Wells, S. IEEE Trans Nanobioscience 2004, 3, 66. https://doi.org/10.1109/TNB.2003.820277
- Ge, Y. Q.; Zhang, Y.; Xia, J. G.; Ma, M.; He, S. Y.; Nie, F.; Gu, N. Colloids Surf. B. Biointerfaces 2009, 73, 294. https://doi.org/10.1016/j.colsurfb.2009.05.031
- Patel, D.; Chang, Y.; Lee, G. H. Curr. Appl. Phys. 2009, 9, S32. https://doi.org/10.1016/j.cap.2008.08.027
- Durmus, Z.; Kavas, H.; Toprak, M. S.; Baykal, A.; Altincekic, T. G.; Aslan, A.; Bozkurt, A.; Cosgun, S. J. Alloys Compd. 2009, 484, 371. https://doi.org/10.1016/j.jallcom.2009.04.103
- Park, J. Y.; Choi, E. S.; Baek, M. J.; Lee, G. H. Mater. Lett. 2009, 63, 379. https://doi.org/10.1016/j.matlet.2008.10.057
- Wang, Z.; Zhu, H.; Wang, X.; Yang, F.; Yang, X. Nanotechnology 2009, 20, 465.
- Wan, J. Q.; Meng, X. X.; Liu, E. Z.; Chen, K. Z. Nanotechnology 2010, 21, 235104. https://doi.org/10.1088/0957-4484/21/23/235104
- Zhang, G.; Feng, J. H.; Lu, L. H.; Zhang, B. H.; Cao, L. Y. J. Colloid Interface Sci. 2010, 351, 128. https://doi.org/10.1016/j.jcis.2010.07.056
- Zhang, Y.; Gong, S. W. Y.; Jin, L.; Li, S. M.; Chen, Z. P.; Ma, M.; Gu, N. Chin. Chem. Lett. 2009, 20, 969. https://doi.org/10.1016/j.cclet.2009.03.038
- Akbarzadeh, A.; Mikaeili, H.; Zarghami, N.; Mohammad, R.; Barkhordari, A.; Davaran, S. Int. J. Nanomedicine 2012, 2012, 511.
- Akbarzadeh, A.; Zarghami, N.; Mikaeili, H.; Asgari, D.; Goganian, A.; Khiabani, H.; Samiei, M.; Davaran, S. Nanotechnol. Sci. Appl. 2012, 5, 13.
- Theerdhala, S.; Bahadur, D.; Vitta, S.; Perkas, N.; Zhong, Z.; Gedanken, A. Ultrason. Sonochem. 2010, 17, 730. https://doi.org/10.1016/j.ultsonch.2009.12.007
- Mandal, M.; Kundu, S.; Ghosh, S. K.; Panigrahi, S.; Sau, T. K.; Yusuf, S. M.; Pal, T. J. Colloid Interface Sci. 2005, 286, 187. https://doi.org/10.1016/j.jcis.2005.01.013
- Iida, H.; Osaka, T.; Takayanagi, K.; Nakanishi, T. J. Colloid Interface Sci. 2007, 314, 274. https://doi.org/10.1016/j.jcis.2007.05.047
- Yamaura, M.; Camilo, R.; Sampaio, L.; Mac do, M.; Nakamura, M.; Toma, H. J. Magn. Magn. Mater. 2004, 279, 210. https://doi.org/10.1016/j.jmmm.2004.01.094
- Ma, M.; Zhang, Y.; Yu, W.; Shen, H.-Y.; Zhang, H.-Q.; Gu, N. Colloids Surf. Physicochem. Eng. Aspects 2003, 212, 219. https://doi.org/10.1016/S0927-7757(02)00305-9
- Shen, X. C.; Fang, X. Z.; Zhou, Y. H.; Liang, H. Chem. Lett. 2004, 33, 1468. https://doi.org/10.1246/cl.2004.1468
- del Campo, A.; Sen, T.; Lellouche, J. P.; Bruce, I. J. J. Magn. Magn. Mater. 2005, 293, 33. https://doi.org/10.1016/j.jmmm.2005.01.040
- Si, S.; Kotal, A.; Mandal, T. K.; Giri, S.; Nakamura, H.; Kohara, T. Chem. Mater. 2004, 16, 3489. https://doi.org/10.1021/cm049205n
- Bose, S.; Hochella, M. F., Jr.; Gorby, Y. A.; Kennedy, D. W.; McCready, D. E.; Madden, A. S.; Lower, B. H. Geochim. Cosmochim. Acta. 2009, 73, 962. https://doi.org/10.1016/j.gca.2008.11.031
- Phu, N. D.; Ngo, D. T.; Hoang, L. H.; Luong, N. H.; Chau, N.; Hai, N. H. J. Phys. D: Appl. Phys. 2011, 44, art No. 345002.
- Chockalingam, A. M.; Babu, H. K. R. R.; Chittor, R.; Tiwari, J. P. J. Nanobiotechnology 2010, 8, 30. https://doi.org/10.1186/1477-3155-8-30
Cited by
- -Cysteine with ZnO: Structure, Surface Chemistry, and Optical Properties vol.31, pp.21, 2015, https://doi.org/10.1021/la504968m
- Applications of L-arginine functionalised green synthesised nickel nanoparticles as gene transfer vector and catalyst vol.11, pp.15, 2016, https://doi.org/10.1080/17458080.2016.1204670
- Comparative Study on Characteristics and Cytotoxicity of Bifunctional Magnetic-Silver Nanostructures: Synthesized Using Three Different Reducing Agents vol.29, pp.4, 2016, https://doi.org/10.1007/s40195-016-0399-9
- -EDTA complexes vol.45, pp.27, 2016, https://doi.org/10.1039/C6DT00249H
- vol.57, pp.2, 2016, https://doi.org/10.1002/jobm.201600417
- Green synthesis and characterisation of L-Serine capped magnetite nanoparticles for removal of Rhodamine B from contaminated water vol.12, pp.1, 2017, https://doi.org/10.1080/17458080.2017.1279354
- Facile electrosynthesis and characterization of superparamagnetic nanoparticles coated with cysteine, glycine and glutamine vol.123, pp.8, 2017, https://doi.org/10.1007/s00339-017-1145-5
- Knoevenagel Condensation of Aldehydes and Ketones with Malononitrile Catalyzed by Amine Compounds-Tethered Fe3O4@SiO2 Nanoparticles vol.147, pp.1, 2017, https://doi.org/10.1007/s10562-016-1916-1
- Amino Acid Coated Superparamagnetic Iron Oxide Nanoparticles for Biomedical Applications Through a Novel Efficient Preparation Method vol.28, pp.3, 2017, https://doi.org/10.1007/s10876-016-1139-z
- New advances strategies for surface functionalization of iron oxide magnetic nano particles (IONPs) vol.43, pp.12, 2017, https://doi.org/10.1007/s11164-017-3084-3
- Iron oxide nanoparticles in modern microbiology and biotechnology vol.43, pp.4, 2017, https://doi.org/10.1080/1040841X.2016.1267708
- Impact of 3–Aminopropyltriethoxysilane-Coated Iron Oxide Nanoparticles on Menaquinone-7 Production Using B. subtilis vol.7, pp.11, 2017, https://doi.org/10.3390/nano7110350
- Functionalized Graphene Oxide with Chitosan for Protein Nanocarriers to Protect against Enzymatic Cleavage and Retain Collagenase Activity vol.7, pp.2045-2322, 2017, https://doi.org/10.1038/srep42258
- Green and one-pot surface coating of iron oxide magnetic nanoparticles with natural amino acids and biocompatibility investigation pp.02682605, 2018, https://doi.org/10.1002/aoc.4069
- Magnetic immobilization of bacteria using iron oxide nanoparticles pp.1573-6776, 2018, https://doi.org/10.1007/s10529-017-2477-0
- Biosynthesis of xanthan gum-coated INPs by using Xanthomonas campestris pp.1751-875X, 2017, https://doi.org/10.1049/iet-nbt.2017.0199
- Synthesis and Application of Amine Functionalized Iron Oxide Nanoparticles on Menaquinone-7 Fermentation: A Step towards Process Intensification vol.6, pp.1, 2015, https://doi.org/10.3390/nano6010001
- Magnetic nanoparticles as double-edged swords: concentration-dependent ordering or disordering effects on lysozyme vol.7, pp.86, 2017, https://doi.org/10.1039/C7RA08903A
- producing extracellular asparaginase: An effective way to intensify downstream process vol.53, pp.9, 2018, https://doi.org/10.1080/01496395.2018.1445110
- Plant-Mediated Synthesis and Applications of Iron Nanoparticles vol.60, pp.2, 2018, https://doi.org/10.1007/s12033-017-0053-4
- L-arginine modified magnetic nanoparticles: green synthesis and characterization vol.29, pp.7, 2018, https://doi.org/10.1088/1361-6528/aaa2b5
- Green synthesis of silver nanoparticles toward bio and medical applications: review study pp.2169-141X, 2018, https://doi.org/10.1080/21691401.2018.1517769
- vol.34, pp.5, 2018, https://doi.org/10.1002/btpr.2660
- Microbial calcium carbonate precipitation with high affinity to fill the concrete pore space: nanobiotechnological approach pp.1615-7605, 2018, https://doi.org/10.1007/s00449-018-2011-3
- Mechanical properties of bio self-healing concrete containing immobilized bacteria with iron oxide nanoparticles vol.102, pp.10, 2018, https://doi.org/10.1007/s00253-018-8913-9
- Green Synthesis, Characterization and Antimicrobial Activity of Silver Nanoparticles Produced fromFumaria officinalis L. Plant Extract vol.80, pp.6, 2018, https://doi.org/10.1134/S1061933X18070013
- -histidine/iron oxide magnetic nanoadsorbent from water: performance and mechanistic studies vol.9, pp.6, 2019, https://doi.org/10.1039/C8RA09279F
- Enhanced adsorption behavior of amended EDTA–graphene oxide for methylene blue and heavy metal ions pp.1735-2630, 2019, https://doi.org/10.1007/s13762-019-02286-7
- Magnetic, X-ray and Mössbauer studies on magnetite/maghemite core-shell nanostructures fabricated through an aqueous route vol.4, pp.110, 2012, https://doi.org/10.1039/c4ra11283k
- Template free synthesis of natural carbohydrates functionalised fluorescent silver nanoclusters vol.10, pp.3, 2012, https://doi.org/10.1049/iet-nbt.2015.0072
- Biomimetic synthesis of silver nanoparticles using microalgal secretory carbohydrates as a novel anticancer and antimicrobial vol.7, pp.1, 2012, https://doi.org/10.1088/2043-6262/7/1/015018
- Green synthesis and characterization of zero-valent iron nanoparticles using stinging nettle (Urtica dioica) leaf extract vol.6, pp.5, 2012, https://doi.org/10.1515/gps-2016-0133
- Green synthesis and characterization of zero-valent iron nanoparticles using stinging nettle (Urtica dioica) leaf extract vol.6, pp.5, 2012, https://doi.org/10.1515/gps-2016-0133
- Nanoparticle Induced Conformational Switch Between α-Helix and β-Sheet Attenuates Immunogenic Response of MPT63 vol.34, pp.30, 2018, https://doi.org/10.1021/acs.langmuir.8b00354
- Synthesis and Characterization of L-Lysin Coated Iron Oxide Nanoparticles as Appropriate Choices for Cell Immobilization and Magnetic Separation vol.9, pp.4, 2012, https://doi.org/10.2174/2210681208666180518084730
- Optimization of reaction parameters for the green synthesis of zero valent iron nanoparticles using pine tree needles vol.8, pp.1, 2019, https://doi.org/10.1515/gps-2019-0055
- Optimization of reaction parameters for the green synthesis of zero valent iron nanoparticles using pine tree needles vol.8, pp.1, 2019, https://doi.org/10.1515/gps-2019-0055
- Preparation and Characterization of Amine- and Carboxylic Acid-functionalized Superparamagnetic Iron Oxide Nanoparticles Through a One-step Facile Electrosynthesis Method vol.15, pp.2, 2012, https://doi.org/10.2174/1573413714666180622150216
- Structural characterization of polysaccharide‐coated iron oxide nanoparticles produced by Staphylococcus warneri, isolated from a thermal spring vol.59, pp.6, 2019, https://doi.org/10.1002/jobm.201800684
- Evaluation of antibacterial property of hydroxyapatite and zirconium oxide‐modificated magnetic nanoparticles against Staphylococcus aureus and Escherichia coli vol.13, pp.4, 2012, https://doi.org/10.1049/iet-nbt.2018.5029
- A comprehensive toxicity evaluation of novel amino acid-modified magnetic ferrofluids for magnetic resonance imaging vol.51, pp.6, 2012, https://doi.org/10.1007/s00726-019-02726-1
- Dynamics of Superparamagnetic Iron Oxide Nanoparticles with Various Polymeric Coatings vol.12, pp.11, 2012, https://doi.org/10.3390/ma12111793
- Proteinogenic Amino Acid Assisted Preparation of Highly Luminescent Hybrid Perovskite Nanoparticles vol.2, pp.7, 2012, https://doi.org/10.1021/acsanm.9b00725
- Gas Diffusion Electrodes on the Electrosynthesis of Controllable Iron Oxide Nanoparticles vol.9, pp.1, 2012, https://doi.org/10.1038/s41598-019-51185-x
- Magnetic immobilisation as a promising approach against bacteriophage infection vol.6, pp.12, 2019, https://doi.org/10.1088/2053-1591/ab4dff
- Graphene Oxide Coatings on Amino Acid Modified Fe Surfaces for Corrosion Inhibition vol.3, pp.4, 2020, https://doi.org/10.1021/acsanm.0c00243
- Highly monodisperse and colloidal stable of L-serine capped magnetite nanoparticles synthesized via sonochemistry assisted co-precipitation method vol.11, pp.2, 2012, https://doi.org/10.1088/2043-6254/ab9192
- Peptide nucleic acid stabilized perovskite nanoparticles for nucleic acid sensing vol.17, pp.None, 2012, https://doi.org/10.1016/j.mtchem.2020.100272
- New Perspectives on Iron-Based Nanostructures vol.8, pp.9, 2012, https://doi.org/10.3390/pr8091128
- Design and characterization of Squalene-Gusperimus nanoparticles for modulation of innate immunity vol.590, pp.None, 2012, https://doi.org/10.1016/j.ijpharm.2020.119893
- Unraveling the toxic effects of iron oxide nanoparticles on nitrogen cycling through manure-soil-plant continuum vol.205, pp.None, 2012, https://doi.org/10.1016/j.ecoenv.2020.111099
- A novel chitosan/tripolyphosphate/ L ‐lysine conjugates for latent fingerprints detection and enhancement vol.66, pp.1, 2012, https://doi.org/10.1111/1556-4029.14569
- Green Synthesis-Based Magnetic Diatoms for Biological Applications vol.9, pp.9, 2021, https://doi.org/10.1021/acssuschemeng.0c07067
- Adsorptive performance of aminoterephthalic acid modified oxidized activated carbon for malachite green dye: mechanism, kinetic and thermodynamic studies vol.56, pp.5, 2012, https://doi.org/10.1080/01496395.2020.1737121
- Bare Iron Oxide Nanoparticles as Drug Delivery Carrier for the Short Cationic Peptide Lasioglossin vol.14, pp.5, 2021, https://doi.org/10.3390/ph14050405
- Synthesis and Functionalisation of Superparamagnetic Nano-Rods towards the Treatment of Glioblastoma Brain Tumours vol.11, pp.9, 2012, https://doi.org/10.3390/nano11092157
- Nano Iron Oxide-PCL Composite as an Improved Soft Tissue Scaffold vol.9, pp.9, 2012, https://doi.org/10.3390/pr9091559
- Magnetically Retrievable Organocatalyst: An Emergent Green Method for The Rapid Formation of Biodynamically Significant Quinolines vol.6, pp.47, 2012, https://doi.org/10.1002/slct.202102127
- Biogenic synthesis of biocompatible L-lysine coated hematite NPs for seed germination vol.136, pp.None, 2012, https://doi.org/10.1016/j.inoche.2021.109169