DOI QR코드

DOI QR Code

Impact of Amino-Acid Coating on the Synthesis and Characteristics of Iron-Oxide Nanoparticles (IONs)

  • Ebrahiminezhad, Alireza (Department of Pharmaceutical Biotechnology, Faculty of Pharmacy and Drug Applied Research Centre, Tabriz University of Medical Sciences) ;
  • Ghasemi, Younes (Department of Pharmaceutical Biotechnology, Faculty of Pharmacy and Pharmaceutical Sciences Research Centre, Shiraz University of Medical Sciences) ;
  • Rasoul-Amini, Sara (Department of Pharmaceutical Biotechnology, Faculty of Pharmacy and Pharmaceutical Sciences Research Centre, Shiraz University of Medical Sciences) ;
  • Barar, Jaleh (Research Centre for Pharmaceutical Nanotechnology, Tabriz University of Medical Sciences) ;
  • Davaran, Soodabeh (Department of Medicinal Chemistry, School of Pharmacy and Drug Applied Research Centre, Tabriz University of Medical Sciences, Department of Medical Nanotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences)
  • Received : 2012.07.19
  • Accepted : 2012.09.03
  • Published : 2012.12.20

Abstract

Iron-oxide nanoparticles (IONs) with biocompatible coatings are the only nanostructural materials which have been approved by the FDA for clinical use. Common biocompatible coatings such as hydrocarbons, polymers, and silica have profound influences on critical characteristics of IONs. Recently, amino acids were introduced as a novel biocompatible coating. In the present study, the effects of amino acids on IONs synthesis and characteristics have been evaluated. Magnetite nanoparticles with L-arginine and L-lysine coatings were synthesised by a coprecipitation reaction in aqueous solvent and their characteristics were compared with naked magnetite nanoparticles. The results showed that amino acids can be a perfect coating for IONs and would increase particle stability without any significant effects on the critical properties of nanoparticles such as particle size and magnetization saturation value.

Keywords

References

  1. Mohapatra, M.; Anand, S. Int. J. Eng. Sci. Tech. 2011, 2, 127.
  2. Mohapatra, S.; Pramanik, N.; Mukherjee, S.; Ghosh, S. K.; Pramanik, P. J. Mater. Sci. 2007, 42, 7566. https://doi.org/10.1007/s10853-007-1597-7
  3. Can, K.; Ozmen, M.; Ersoz, M. Colloids Surf. B. Biointerfaces 2009, 71, 154. https://doi.org/10.1016/j.colsurfb.2009.01.021
  4. Hu, B.; Pan, J.; Yu, H. L.; Liu, J. W.; Xu, J. H. Process Biochem. 2009, 44, 1019. https://doi.org/10.1016/j.procbio.2009.05.001
  5. Shaw, S. Y.; Chen, Y. J.; Ou, J. J.; Ho, L. Enzyme Microb. Technol. 2006, 39, 1089. https://doi.org/10.1016/j.enzmictec.2006.02.025
  6. Tang, T.; Fan, H.; Ai, S.; Han, R.; Qiu, Y. Chemosphere 2011, 83, 255. https://doi.org/10.1016/j.chemosphere.2010.12.075
  7. Ansari, F.; Grigoriev, P.; Libor, S.; Tothill, I. E.; Ramsden, J. J. Biotechnol. Bioeng. 2009, 102, 1505. https://doi.org/10.1002/bit.22161
  8. Huang, Y. F.; Wang, Y. F.; Yan, X. P. Environ. Sci. Technol. 2010, 44, 7908. https://doi.org/10.1021/es102285n
  9. Li, Y. G.; Gao, H. S.; Li, W. L.; Xing, J. M.; Liu, H. Z. Bioresour. Technol. 2009, 100, 5092. https://doi.org/10.1016/j.biortech.2009.05.064
  10. Zahavy, E.; Ber, R.; Gur, D.; Abramovich, H.; Freeman, E.; Maoz, S.; Yitzhaki, S. Adv. Exp. Med. Biol. 2012, 733, 23. https://doi.org/10.1007/978-94-007-2555-3_3
  11. Viota, J. L.; Arroyo, F. J.; Delgado, A. V.; Horno, J. J. Colloid Interface Sci. 2010, 344, 144. https://doi.org/10.1016/j.jcis.2009.11.061
  12. Singh, N.; Jenkins, G. J.; Asadi, R.; Doak, S. H. Nano Rev. 2010, 1, 5358.
  13. Berry, C. C.; Wells, S.; Charles, S.; Curtis, A. S. G. Biomaterials 2003, 24, 4551. https://doi.org/10.1016/S0142-9612(03)00237-0
  14. Berry, C. C.; Wells, S.; Charles, S.; Aitchison, G.; Curtis, A. S. G. Biomaterials 2004, 25, 5405. https://doi.org/10.1016/j.biomaterials.2003.12.046
  15. Gupta, A. K.; Gupta, M. Biomaterials 2005, 26, 1565. https://doi.org/10.1016/j.biomaterials.2004.05.022
  16. Pisanic, T. R., 2nd; Blackwell, J. D.; Shubayev, V. I.; Finones, R. R.; Jin, S. Biomaterials 2007, 28, 2572. https://doi.org/10.1016/j.biomaterials.2007.01.043
  17. Muller, K.; Skepper, J. N.; Posfai, M.; Trivedi, R.; Howarth, S.; Corot, C.; Lancelot, E.; Thompson, P. W.; Brown, A. P.; Gillard, J. H. Biomaterials 2007, 28, 1629. https://doi.org/10.1016/j.biomaterials.2006.12.003
  18. Karlsson, H. L.; Gustafsson, J.; Cronholm, P.; Moller, L. Toxicol. Lett. 2009, 188, 112. https://doi.org/10.1016/j.toxlet.2009.03.014
  19. Cengelli, F.; Maysinger, D.; Tschudi-Monnet, F.; Montet, X.; Corot, C.; Petri-Fink, A.; Hofmann, H.; Juillerat-Jeanneret, L. J. Pharmacol. Exp. Ther. 2006, 318, 108. https://doi.org/10.1124/jpet.106.101915
  20. Mahmoudi, M.; Simchi, A.; Imani, M.; Shokrgozar, M. A.; Milani, A. S.; Hafeli, U. O.; Stroeve, P. Colloids Surf. B. Biointerfaces 2010, 75, 300. https://doi.org/10.1016/j.colsurfb.2009.08.044
  21. Gupta, A. K.; Wells, S. IEEE Trans Nanobioscience 2004, 3, 66. https://doi.org/10.1109/TNB.2003.820277
  22. Ge, Y. Q.; Zhang, Y.; Xia, J. G.; Ma, M.; He, S. Y.; Nie, F.; Gu, N. Colloids Surf. B. Biointerfaces 2009, 73, 294. https://doi.org/10.1016/j.colsurfb.2009.05.031
  23. Patel, D.; Chang, Y.; Lee, G. H. Curr. Appl. Phys. 2009, 9, S32. https://doi.org/10.1016/j.cap.2008.08.027
  24. Durmus, Z.; Kavas, H.; Toprak, M. S.; Baykal, A.; Altincekic, T. G.; Aslan, A.; Bozkurt, A.; Cosgun, S. J. Alloys Compd. 2009, 484, 371. https://doi.org/10.1016/j.jallcom.2009.04.103
  25. Park, J. Y.; Choi, E. S.; Baek, M. J.; Lee, G. H. Mater. Lett. 2009, 63, 379. https://doi.org/10.1016/j.matlet.2008.10.057
  26. Wang, Z.; Zhu, H.; Wang, X.; Yang, F.; Yang, X. Nanotechnology 2009, 20, 465.
  27. Wan, J. Q.; Meng, X. X.; Liu, E. Z.; Chen, K. Z. Nanotechnology 2010, 21, 235104. https://doi.org/10.1088/0957-4484/21/23/235104
  28. Zhang, G.; Feng, J. H.; Lu, L. H.; Zhang, B. H.; Cao, L. Y. J. Colloid Interface Sci. 2010, 351, 128. https://doi.org/10.1016/j.jcis.2010.07.056
  29. Zhang, Y.; Gong, S. W. Y.; Jin, L.; Li, S. M.; Chen, Z. P.; Ma, M.; Gu, N. Chin. Chem. Lett. 2009, 20, 969. https://doi.org/10.1016/j.cclet.2009.03.038
  30. Akbarzadeh, A.; Mikaeili, H.; Zarghami, N.; Mohammad, R.; Barkhordari, A.; Davaran, S. Int. J. Nanomedicine 2012, 2012, 511.
  31. Akbarzadeh, A.; Zarghami, N.; Mikaeili, H.; Asgari, D.; Goganian, A.; Khiabani, H.; Samiei, M.; Davaran, S. Nanotechnol. Sci. Appl. 2012, 5, 13.
  32. Theerdhala, S.; Bahadur, D.; Vitta, S.; Perkas, N.; Zhong, Z.; Gedanken, A. Ultrason. Sonochem. 2010, 17, 730. https://doi.org/10.1016/j.ultsonch.2009.12.007
  33. Mandal, M.; Kundu, S.; Ghosh, S. K.; Panigrahi, S.; Sau, T. K.; Yusuf, S. M.; Pal, T. J. Colloid Interface Sci. 2005, 286, 187. https://doi.org/10.1016/j.jcis.2005.01.013
  34. Iida, H.; Osaka, T.; Takayanagi, K.; Nakanishi, T. J. Colloid Interface Sci. 2007, 314, 274. https://doi.org/10.1016/j.jcis.2007.05.047
  35. Yamaura, M.; Camilo, R.; Sampaio, L.; Mac do, M.; Nakamura, M.; Toma, H. J. Magn. Magn. Mater. 2004, 279, 210. https://doi.org/10.1016/j.jmmm.2004.01.094
  36. Ma, M.; Zhang, Y.; Yu, W.; Shen, H.-Y.; Zhang, H.-Q.; Gu, N. Colloids Surf. Physicochem. Eng. Aspects 2003, 212, 219. https://doi.org/10.1016/S0927-7757(02)00305-9
  37. Shen, X. C.; Fang, X. Z.; Zhou, Y. H.; Liang, H. Chem. Lett. 2004, 33, 1468. https://doi.org/10.1246/cl.2004.1468
  38. del Campo, A.; Sen, T.; Lellouche, J. P.; Bruce, I. J. J. Magn. Magn. Mater. 2005, 293, 33. https://doi.org/10.1016/j.jmmm.2005.01.040
  39. Si, S.; Kotal, A.; Mandal, T. K.; Giri, S.; Nakamura, H.; Kohara, T. Chem. Mater. 2004, 16, 3489. https://doi.org/10.1021/cm049205n
  40. Bose, S.; Hochella, M. F., Jr.; Gorby, Y. A.; Kennedy, D. W.; McCready, D. E.; Madden, A. S.; Lower, B. H. Geochim. Cosmochim. Acta. 2009, 73, 962. https://doi.org/10.1016/j.gca.2008.11.031
  41. Phu, N. D.; Ngo, D. T.; Hoang, L. H.; Luong, N. H.; Chau, N.; Hai, N. H. J. Phys. D: Appl. Phys. 2011, 44, art No. 345002.
  42. Chockalingam, A. M.; Babu, H. K. R. R.; Chittor, R.; Tiwari, J. P. J. Nanobiotechnology 2010, 8, 30. https://doi.org/10.1186/1477-3155-8-30

Cited by

  1. -Cysteine with ZnO: Structure, Surface Chemistry, and Optical Properties vol.31, pp.21, 2015, https://doi.org/10.1021/la504968m
  2. Applications of L-arginine functionalised green synthesised nickel nanoparticles as gene transfer vector and catalyst vol.11, pp.15, 2016, https://doi.org/10.1080/17458080.2016.1204670
  3. Comparative Study on Characteristics and Cytotoxicity of Bifunctional Magnetic-Silver Nanostructures: Synthesized Using Three Different Reducing Agents vol.29, pp.4, 2016, https://doi.org/10.1007/s40195-016-0399-9
  4. -EDTA complexes vol.45, pp.27, 2016, https://doi.org/10.1039/C6DT00249H
  5. vol.57, pp.2, 2016, https://doi.org/10.1002/jobm.201600417
  6. Green synthesis and characterisation of L-Serine capped magnetite nanoparticles for removal of Rhodamine B from contaminated water vol.12, pp.1, 2017, https://doi.org/10.1080/17458080.2017.1279354
  7. Facile electrosynthesis and characterization of superparamagnetic nanoparticles coated with cysteine, glycine and glutamine vol.123, pp.8, 2017, https://doi.org/10.1007/s00339-017-1145-5
  8. Knoevenagel Condensation of Aldehydes and Ketones with Malononitrile Catalyzed by Amine Compounds-Tethered Fe3O4@SiO2 Nanoparticles vol.147, pp.1, 2017, https://doi.org/10.1007/s10562-016-1916-1
  9. Amino Acid Coated Superparamagnetic Iron Oxide Nanoparticles for Biomedical Applications Through a Novel Efficient Preparation Method vol.28, pp.3, 2017, https://doi.org/10.1007/s10876-016-1139-z
  10. New advances strategies for surface functionalization of iron oxide magnetic nano particles (IONPs) vol.43, pp.12, 2017, https://doi.org/10.1007/s11164-017-3084-3
  11. Iron oxide nanoparticles in modern microbiology and biotechnology vol.43, pp.4, 2017, https://doi.org/10.1080/1040841X.2016.1267708
  12. Impact of 3–Aminopropyltriethoxysilane-Coated Iron Oxide Nanoparticles on Menaquinone-7 Production Using B. subtilis vol.7, pp.11, 2017, https://doi.org/10.3390/nano7110350
  13. Functionalized Graphene Oxide with Chitosan for Protein Nanocarriers to Protect against Enzymatic Cleavage and Retain Collagenase Activity vol.7, pp.2045-2322, 2017, https://doi.org/10.1038/srep42258
  14. Green and one-pot surface coating of iron oxide magnetic nanoparticles with natural amino acids and biocompatibility investigation pp.02682605, 2018, https://doi.org/10.1002/aoc.4069
  15. Magnetic immobilization of bacteria using iron oxide nanoparticles pp.1573-6776, 2018, https://doi.org/10.1007/s10529-017-2477-0
  16. Biosynthesis of xanthan gum-coated INPs by using Xanthomonas campestris pp.1751-875X, 2017, https://doi.org/10.1049/iet-nbt.2017.0199
  17. Synthesis and Application of Amine Functionalized Iron Oxide Nanoparticles on Menaquinone-7 Fermentation: A Step towards Process Intensification vol.6, pp.1, 2015, https://doi.org/10.3390/nano6010001
  18. Magnetic nanoparticles as double-edged swords: concentration-dependent ordering or disordering effects on lysozyme vol.7, pp.86, 2017, https://doi.org/10.1039/C7RA08903A
  19. producing extracellular asparaginase: An effective way to intensify downstream process vol.53, pp.9, 2018, https://doi.org/10.1080/01496395.2018.1445110
  20. Plant-Mediated Synthesis and Applications of Iron Nanoparticles vol.60, pp.2, 2018, https://doi.org/10.1007/s12033-017-0053-4
  21. L-arginine modified magnetic nanoparticles: green synthesis and characterization vol.29, pp.7, 2018, https://doi.org/10.1088/1361-6528/aaa2b5
  22. Green synthesis of silver nanoparticles toward bio and medical applications: review study pp.2169-141X, 2018, https://doi.org/10.1080/21691401.2018.1517769
  23. vol.34, pp.5, 2018, https://doi.org/10.1002/btpr.2660
  24. Microbial calcium carbonate precipitation with high affinity to fill the concrete pore space: nanobiotechnological approach pp.1615-7605, 2018, https://doi.org/10.1007/s00449-018-2011-3
  25. Mechanical properties of bio self-healing concrete containing immobilized bacteria with iron oxide nanoparticles vol.102, pp.10, 2018, https://doi.org/10.1007/s00253-018-8913-9
  26. Green Synthesis, Characterization and Antimicrobial Activity of Silver Nanoparticles Produced fromFumaria officinalis L. Plant Extract vol.80, pp.6, 2018, https://doi.org/10.1134/S1061933X18070013
  27. -histidine/iron oxide magnetic nanoadsorbent from water: performance and mechanistic studies vol.9, pp.6, 2019, https://doi.org/10.1039/C8RA09279F
  28. Enhanced adsorption behavior of amended EDTA–graphene oxide for methylene blue and heavy metal ions pp.1735-2630, 2019, https://doi.org/10.1007/s13762-019-02286-7
  29. Magnetic, X-ray and Mössbauer studies on magnetite/maghemite core-shell nanostructures fabricated through an aqueous route vol.4, pp.110, 2012, https://doi.org/10.1039/c4ra11283k
  30. Template free synthesis of natural carbohydrates functionalised fluorescent silver nanoclusters vol.10, pp.3, 2012, https://doi.org/10.1049/iet-nbt.2015.0072
  31. Biomimetic synthesis of silver nanoparticles using microalgal secretory carbohydrates as a novel anticancer and antimicrobial vol.7, pp.1, 2012, https://doi.org/10.1088/2043-6262/7/1/015018
  32. Green synthesis and characterization of zero-valent iron nanoparticles using stinging nettle (Urtica dioica) leaf extract vol.6, pp.5, 2012, https://doi.org/10.1515/gps-2016-0133
  33. Green synthesis and characterization of zero-valent iron nanoparticles using stinging nettle (Urtica dioica) leaf extract vol.6, pp.5, 2012, https://doi.org/10.1515/gps-2016-0133
  34. Nanoparticle Induced Conformational Switch Between α-Helix and β-Sheet Attenuates Immunogenic Response of MPT63 vol.34, pp.30, 2018, https://doi.org/10.1021/acs.langmuir.8b00354
  35. Synthesis and Characterization of L-Lysin Coated Iron Oxide Nanoparticles as Appropriate Choices for Cell Immobilization and Magnetic Separation vol.9, pp.4, 2012, https://doi.org/10.2174/2210681208666180518084730
  36. Optimization of reaction parameters for the green synthesis of zero valent iron nanoparticles using pine tree needles vol.8, pp.1, 2019, https://doi.org/10.1515/gps-2019-0055
  37. Optimization of reaction parameters for the green synthesis of zero valent iron nanoparticles using pine tree needles vol.8, pp.1, 2019, https://doi.org/10.1515/gps-2019-0055
  38. Preparation and Characterization of Amine- and Carboxylic Acid-functionalized Superparamagnetic Iron Oxide Nanoparticles Through a One-step Facile Electrosynthesis Method vol.15, pp.2, 2012, https://doi.org/10.2174/1573413714666180622150216
  39. Structural characterization of polysaccharide‐coated iron oxide nanoparticles produced by Staphylococcus warneri, isolated from a thermal spring vol.59, pp.6, 2019, https://doi.org/10.1002/jobm.201800684
  40. Evaluation of antibacterial property of hydroxyapatite and zirconium oxide‐modificated magnetic nanoparticles against Staphylococcus aureus and Escherichia coli vol.13, pp.4, 2012, https://doi.org/10.1049/iet-nbt.2018.5029
  41. A comprehensive toxicity evaluation of novel amino acid-modified magnetic ferrofluids for magnetic resonance imaging vol.51, pp.6, 2012, https://doi.org/10.1007/s00726-019-02726-1
  42. Dynamics of Superparamagnetic Iron Oxide Nanoparticles with Various Polymeric Coatings vol.12, pp.11, 2012, https://doi.org/10.3390/ma12111793
  43. Proteinogenic Amino Acid Assisted Preparation of Highly Luminescent Hybrid Perovskite Nanoparticles vol.2, pp.7, 2012, https://doi.org/10.1021/acsanm.9b00725
  44. Gas Diffusion Electrodes on the Electrosynthesis of Controllable Iron Oxide Nanoparticles vol.9, pp.1, 2012, https://doi.org/10.1038/s41598-019-51185-x
  45. Magnetic immobilisation as a promising approach against bacteriophage infection vol.6, pp.12, 2019, https://doi.org/10.1088/2053-1591/ab4dff
  46. Graphene Oxide Coatings on Amino Acid Modified Fe Surfaces for Corrosion Inhibition vol.3, pp.4, 2020, https://doi.org/10.1021/acsanm.0c00243
  47. Highly monodisperse and colloidal stable of L-serine capped magnetite nanoparticles synthesized via sonochemistry assisted co-precipitation method vol.11, pp.2, 2012, https://doi.org/10.1088/2043-6254/ab9192
  48. Peptide nucleic acid stabilized perovskite nanoparticles for nucleic acid sensing vol.17, pp.None, 2012, https://doi.org/10.1016/j.mtchem.2020.100272
  49. New Perspectives on Iron-Based Nanostructures vol.8, pp.9, 2012, https://doi.org/10.3390/pr8091128
  50. Design and characterization of Squalene-Gusperimus nanoparticles for modulation of innate immunity vol.590, pp.None, 2012, https://doi.org/10.1016/j.ijpharm.2020.119893
  51. Unraveling the toxic effects of iron oxide nanoparticles on nitrogen cycling through manure-soil-plant continuum vol.205, pp.None, 2012, https://doi.org/10.1016/j.ecoenv.2020.111099
  52. A novel chitosan/tripolyphosphate/ L ‐lysine conjugates for latent fingerprints detection and enhancement vol.66, pp.1, 2012, https://doi.org/10.1111/1556-4029.14569
  53. Green Synthesis-Based Magnetic Diatoms for Biological Applications vol.9, pp.9, 2021, https://doi.org/10.1021/acssuschemeng.0c07067
  54. Adsorptive performance of aminoterephthalic acid modified oxidized activated carbon for malachite green dye: mechanism, kinetic and thermodynamic studies vol.56, pp.5, 2012, https://doi.org/10.1080/01496395.2020.1737121
  55. Bare Iron Oxide Nanoparticles as Drug Delivery Carrier for the Short Cationic Peptide Lasioglossin vol.14, pp.5, 2021, https://doi.org/10.3390/ph14050405
  56. Synthesis and Functionalisation of Superparamagnetic Nano-Rods towards the Treatment of Glioblastoma Brain Tumours vol.11, pp.9, 2012, https://doi.org/10.3390/nano11092157
  57. Nano Iron Oxide-PCL Composite as an Improved Soft Tissue Scaffold vol.9, pp.9, 2012, https://doi.org/10.3390/pr9091559
  58. Magnetically Retrievable Organocatalyst: An Emergent Green Method for The Rapid Formation of Biodynamically Significant Quinolines vol.6, pp.47, 2012, https://doi.org/10.1002/slct.202102127
  59. Biogenic synthesis of biocompatible L-lysine coated hematite NPs for seed germination vol.136, pp.None, 2012, https://doi.org/10.1016/j.inoche.2021.109169