DOI QR코드

DOI QR Code

Biocompatibility of Nanoscale Hydroxyapatite-embedded Chitosan Films

  • Sun, Fangfang (Department of Nanomedical Engineering, College of Nanoscience and Nanotechnology, Pusan National University) ;
  • Koh, Kwangnak (Department of Nanomedical Engineering, College of Nanoscience and Nanotechnology, Pusan National University) ;
  • Ryu, Su-Chak (Department of Nanomedical Engineering, College of Nanoscience and Nanotechnology, Pusan National University) ;
  • Han, Dong-Wook (Department of Nanomedical Engineering, College of Nanoscience and Nanotechnology, Pusan National University) ;
  • Lee, Jaebeom (Department of Nanomedical Engineering, College of Nanoscience and Nanotechnology, Pusan National University)
  • Received : 2012.06.27
  • Accepted : 2012.09.05
  • Published : 2012.12.20

Abstract

In order to improve the bioactivity and mechanical properties of hydroxyapatite (HAp), chitosan (Chi) was in situ combined into HAp to fabricate a composite scaffold by a sublimation-assisted compression method. A highly porous film with sufficient mechanical strength was prepared and the bioactivity was investigated by examining the apatite formed on the scaffolds incubated in simulated body fluid. In addition, the cytotoxicity of the HAp/Chi composite was studied by evaluating the viability of murine fibroblasts (L-929 cells) exposed to diluted extracts of the composite films. The apatite layer was assessed using scanning electronic microscopy, inductively coupled plasma-optical emission spectrometry and weight measurement. Composite analysis showed that a layer of micro-sized, needle-like crystals was formed on the surface of the composite film. Additionally, the WST-8 assay after L-929 cells were exposed to diluted extracts of the composite indicated that the HAp/Chi scaffold has good in vitro cytocompatibility. The results indicated that HAp/Chi composites with porous structure are promising scaffolding materials for bone-patch engineering because their porous morphology can provide an environment conductive to attachment and growth of osteoblasts and osteogenic cells.

Keywords

References

  1. Rezwan, K.; Chen, Q. Z.; Blaker, J. J.; Boccaccini, A. R. Biomaterials 2006, 27, 3413. https://doi.org/10.1016/j.biomaterials.2006.01.039
  2. Weiner, S.; Wagner, H. D. Annu. Rev. Mater. Sci. 1998, 28, 271. https://doi.org/10.1146/annurev.matsci.28.1.271
  3. Zhou, H.; Lee, J. Acta Biomaterialia 2011, 7, 2769. https://doi.org/10.1016/j.actbio.2011.03.019
  4. Poinern, G. E.; Brundavanam, R. K.; Mondinos, N.; Jiang, Z. T. Ultrason. Sonochem. 2009, 16, 469. https://doi.org/10.1016/j.ultsonch.2009.01.007
  5. Hellmich, C.; Ulm, F. J. Biomech. Model. Mechanobiol. 2003, 2, 21. https://doi.org/10.1007/s10237-002-0025-9
  6. Dorozhkin, S. V. Acta Biomaterialia 2010, 6, 715. https://doi.org/10.1016/j.actbio.2009.10.031
  7. Zhao, H.; Ma, L.; Gao, C.; Shen, J. Polym. Adv. Technol. 2008, 19, 1590.
  8. Brown, G. D.; Mealey, B. L.; Nummikoski, P. V.; Bifano, S. L.; Waldrop, T. C. J. Periodontol. 1998, 69, 146. https://doi.org/10.1902/jop.1998.69.2.146
  9. Kimelman, N.; Pelled, G.; Helm, G. A.; Huard, J.; Schwarz, E. M.; Gazit, D. Tissue Eng. 2007, 13, 1135. https://doi.org/10.1089/ten.2007.0096
  10. Bruder, S. P.; Jaiswal, N.; Ricalton, N. S.; Mosca, J. D.; Kraus, K. H.; Kadiyala, S. Clin. Orthop. Relat. Res. 1998, 355.
  11. Vescovi, J.; Jamal, S.; De Souza, M. Osteoporosis Int. 2008, 19, 465. https://doi.org/10.1007/s00198-007-0518-6
  12. Ryu, S. C.; Lim, B. K.; Sun, F.; Koh, K.; Han, D. W.; Lee, J. Bull. Korean Chem. Soc. 2009, 30, 887. https://doi.org/10.5012/bkcs.2009.30.4.887
  13. Zhang, Y.; Zhang, M. J. Biomed. Mater. Res. 2001, 55, 304. https://doi.org/10.1002/1097-4636(20010605)55:3<304::AID-JBM1018>3.0.CO;2-J
  14. Habraken, W.; Wolke, J. G. C.; Jansen, J. A. Adv. Drug Delive. Rev. 2007, 59, 234. https://doi.org/10.1016/j.addr.2007.03.011
  15. Hutmacher, D. W.; Schantz, J. T.; Lam, C. X. F.; Tan, K. C.; Lim, T. C. J. Tissue Eng. Regen. Med. 2007, 1, 245. https://doi.org/10.1002/term.24
  16. Pielichowska, K.; Blazewicz, S. Advances in Polymer Science; Springer: 2010; Vol. 232, p 97.
  17. Kim, S. H.; Lim, B. K.; Sun, F.; Koh, K.; Ryu, S. C.; Kim, H. S.; Lee, J. Polymer Bulletin 2009, 62, 111. https://doi.org/10.1007/s00289-008-1008-5
  18. Zou, Q.; Li, Y.; Zhang, L.; Zuo, Y.; Li, J.; Li, X. J. Biomed. Mater. Res. B: Appl. Biomater. 2009, 90B, 156.
  19. Sun, F.; Zhou, H.; Lee, J. Acta Biomaterialia 2011, 7, 3813. https://doi.org/10.1016/j.actbio.2011.07.002
  20. Sun, F.; Lim, B. K.; Ryu, S. C.; Lee, D.; Lee, J. Mater. Sci. Eng. C 2010, 30, 789. https://doi.org/10.1016/j.msec.2010.03.009
  21. Sun, F.; Cha, H. R.; Bae, K. E.; Hong, S.; Kim, J. M.; Kim, S. H.;Lee, J.; Lee, D. Mater. Sci. Eng. A 2011, 528, 6636. https://doi.org/10.1016/j.msea.2011.05.028
  22. Chang, B. S. Biomaterials 2000, 21, 1291. https://doi.org/10.1016/S0142-9612(00)00030-2
  23. Woodard, J. R.; Hilldore, A. J.; Lan, S. K.; Park, C. J.; Morgan, A. W.; Eurell, J. A. C.; Clark, S. G.; Wheeler, M. B.; Jamison, R. D.; Wagoner Johnson, A. J. Biomaterials 2007, 28, 45. https://doi.org/10.1016/j.biomaterials.2006.08.021
  24. Itoh, S.; Kikuchi, M.; Takakuda, K.; Koyama, Y.; Matsumoto, H. N.; Ichinose, S.; Tanaka, J.; Kawauchi, T.; Shinomiya, K. J. Biomed. Mater. Res. 2001, 54, 445. https://doi.org/10.1002/1097-4636(20010305)54:3<445::AID-JBM190>3.0.CO;2-9
  25. Liu, C.; Wang, W.; Shen, W.; Chen, T.; Hu, L.; Chen, Z. J. Endodont. 1997, 23, 490. https://doi.org/10.1016/S0099-2399(97)80307-X
  26. Ito, M.; Hidaka, Y.; Nakajima, M.; Yagasaki, H.; Kafrawy, A. H. J. Biomed. Mater. Res. 1999, 45, 204. https://doi.org/10.1002/(SICI)1097-4636(19990605)45:3<204::AID-JBM7>3.0.CO;2-4
  27. Rizzi, S. C.; Heath, D. J.; Coombes, A. G. A.; Bock, N.; Textor, M.; Downes, S. J. Biomed. Mater. Res. 2001, 55, 475. https://doi.org/10.1002/1097-4636(20010615)55:4<475::AID-JBM1039>3.0.CO;2-Q
  28. Lin, H. R.; Yeh, Y. J. J. Biomed. Mater. Res. B: Appl. Biomater. 2004, 71B, 52. https://doi.org/10.1002/jbm.b.30065
  29. Kong, L.; Gao, Y.; Lu, G.; Gong, Y.; Zhao, N.; Zhang, X. Eur. Polym. J. 2006, 42, 3171. https://doi.org/10.1016/j.eurpolymj.2006.08.009
  30. Im, K. H.; Park, J. H.; Kim, K. N.; Kim, K. M.; Choi, S. H.; Kim, C. K.; Lee, Y. K. Key Eng. Mat. 2005, 284, 729. https://doi.org/10.4028/www.scientific.net/KEM.284-286.729
  31. Song, W. H.; Jun, Y. K.; Han, Y.; Hong, S. H. Biomaterials 2004, 25, 3341. https://doi.org/10.1016/j.biomaterials.2003.09.103
  32. Kokubo, T.; Takadama, H. Biomaterials 2006, 27, 2907. https://doi.org/10.1016/j.biomaterials.2006.01.017
  33. Kokubo, T.; Kim, H. M.; Kawashita, M. Biomaterials 2003, 24, 2161. https://doi.org/10.1016/S0142-9612(03)00044-9
  34. Madihally, S. V.; Matthew, H. W. T. Biomaterials 1999, 20, 1133. https://doi.org/10.1016/S0142-9612(99)00011-3
  35. Xianmiao, C.; Yubao, L.; Yi, Z.; Li, Z.; Jidong, L.; Huanan, W. Mater. Sci. Eng. C 2009, 29, 29. https://doi.org/10.1016/j.msec.2008.05.008
  36. Wang, H.; Lee, J. K.; Moursi, A.; Lannutti, J. J. J. Biomed. Mater. Res. A 2003, 67A, 599. https://doi.org/10.1002/jbm.a.10538
  37. Lickorish, D.; Ramshaw, J. A. M.; Werkmeister, J. A.; Glattauer, V.; Howlett, C. R. J. Biomed. Mater. Res. A 2004, 68A, 19. https://doi.org/10.1002/jbm.a.20031
  38. Yang, F.; Wolke, J. G. C.; Jansen, J. A. Chem. Eng. J. 2008, 137, 154. https://doi.org/10.1016/j.cej.2007.07.076
  39. Hacker, G. Cell Tissue Res. 2000, 301, 5. https://doi.org/10.1007/s004410000193

Cited by

  1. Influence of Acetylation on the Antimicrobial Properties of Chitosan Non-Woven Fabrics vol.34, pp.8, 2013, https://doi.org/10.5012/bkcs.2013.34.8.2441
  2. Use of Cellulose and Oxidized Cellulose Nanocrystals from Olive Stones in Chitosan Bionanocomposites vol.2015, pp.1687-4129, 2015, https://doi.org/10.1155/2015/687490
  3. Syntheses, Structure, and Properties of Four Metal-Organic Polymers Based on Rigid Multiple Carboxylate Ligands and N-Donor Ligands vol.36, pp.11, 2015, https://doi.org/10.1002/bkcs.10538
  4. Radiation synthesis and characterization of sodium alginate/chitosan/hydroxyapatite nanocomposite hydrogels: a drug delivery system for liver cancer vol.72, pp.4, 2015, https://doi.org/10.1007/s00289-015-1301-z
  5. study on the biocompatibility of chitosan-hydroxyapatite film depending on degree of deacetylation vol.105, pp.6, 2017, https://doi.org/10.1002/jbm.a.35993
  6. Microstructure Evolution and Mechanical Properties Improvement in Liquid-Phase-Sintered Hydroxyapatite by Laser Sintering vol.8, pp.3, 2015, https://doi.org/10.3390/ma8031162
  7. Improving the stoichiometry of RF-sputtered amorphous alumina thin films by thermal annealing vol.106, pp.5, 2015, https://doi.org/10.3139/146.111205
  8. Synthesis, Structures and Properties of Three Metal-organic Frameworks Based on 3-(4-((1H-imidazol-1-yl)methyl)phenyl)acrylic Acid vol.35, pp.1, 2014, https://doi.org/10.5012/bkcs.2014.35.1.182
  9. Syntheses, Structures, and Properties of Four New Metal-Organic Frameworks Bases on Imidazole Ligands and 5-Amino-2,4,6-triodoisophthalic Acid vol.46, pp.8, 2012, https://doi.org/10.1080/15533174.2015.1004447
  10. Human Tonsil-Derived Mesenchymal Stem Cells-Loaded Hydroxyapatite-Chitosan Patch for Mastoid Obliteration vol.3, pp.2, 2012, https://doi.org/10.1021/acsabm.9b01018