DOI QR코드

DOI QR Code

프레즈넬-불루스타인 변환을 이용한 2파장 디지털 홀로그래픽 연구

A Study on Two-wavelength Digital Holography Using the Fresnel-Bluestein Transform

  • 투고 : 2012.09.06
  • 심사 : 2012.10.22
  • 발행 : 2012.12.25

초록

이 파장 디지털 홀로그래피는 단파장 디지털 홀로그래피에 비해 보다 큰 단차를 얻는데 사용할 수 있다. 이파장 홀로그래피 방법을 이용하기 위해서는 각각의 파장에서 얻은 홀로그램으로부터 재생된 위상 이미지 크기가 동일하여야하는데, 위상 이미지 크기는 재생거리와 파장에 의존한다. 이러한 문제점을 해결하기 위하여 프레즈렐-불루스타인 변환법이 제안되었다. 이변환법은 재생상의 크기를 재생거리와 파장에 의존하지 않고 자유롭게 만들 수 있다. 본 연구에서는 프레즈렐-불루스타인 변환법을 이파장 홀로그래피에 적용하여 파장에 의존하지 않는 동일한 위상 재생상을 얻을 수 있음을 실험적으로 확인하였다.

Dual-wavelength holography has a better axial range than single-wavelength holography, allowing unambiguous phase imaging. The size of a reconstructed image depends on the reconstruction distance and wavelength. The two phase image sizes of different wavelength holograms should be the same in order to apply dual-wavelength holography. The Fresnel-Bluestein transform method is proposed to eliminate the dependence on the reconstruction distance and wavelength. We found that the Fresnel-Bluestein transform is very useful for making different reconstructed image sizes experimentally. Also we applied the Fresnel-Bluestein transform to make the same reconstruction image size in dual wavelength holography.

키워드

참고문헌

  1. J. W. Goodman and R. W. Lawrence, "Digital image formation from electronically detected holograms," Appl. Phys. Lett. 11, 77-79 (1967). https://doi.org/10.1063/1.1755043
  2. M. A. Kronrod, N. S. Merzlyakov, and L. P. Yaroslavski, "Reconstruction of hologram with a computer," Sov. Phys. Tech. 17, 434-444 (1972).
  3. G. K. Wernicke, O. Kruschke, N. Demoli, and H. Gruber, "Investigation of- micro-opto-electro-mechanical components with a holographic microscopic interferometer," Proc. SPIE 3396, 238-243 (1998).
  4. L. Xu, X. Peng, J. Miao, and K. Asundi, "Studies of digital microscopic with application to microstructure testing," Appl. Opt. 40, 5046-5051 (2001). https://doi.org/10.1364/AO.40.005046
  5. S. Kim, H. Lee, and J. Son, "Recording of larger object by using two confocal lenses in digital holography," Korean J. Opt. Photon. (Hankook Kwanghak Hoeji) 14, 244-248 (2003). https://doi.org/10.3807/KJOP.2003.14.3.244
  6. U. Schnars, "Direct phase determination in hologram interferometry with use of digitally recorded holograms," J. Opt. Soc. Am. A 11, 2011-2015 (1994). https://doi.org/10.1364/JOSAA.11.002011
  7. K. Creath, Y. Cheng, and J. C. Wyant, "Contouring aspheric surfaces using two-wavelength phase-shifting interferometryt," Optica Acta 32, 1455-1464 (1985). https://doi.org/10.1080/713821689
  8. Y. Cheng and J. C. Wyant, "Two-wavelength phase shifting interferometry," Appl. Opt. 23, 4539-4543 (1984). https://doi.org/10.1364/AO.23.004539
  9. H. Cho, D. Kim, W. Kung, S, Shin, and Y. Yu, "Dualwavelength digital holography microscope for BGA measurement using partial coherence source," J. Opt. Soc. Korea 15, 352-356 (2011). https://doi.org/10.3807/JOSK.2011.15.4.352
  10. L. Yu and M. K. Kim, "Wavelength-scanning digital interference holography for tomographic three-dimensional imaging by use of the angular spectrum method," Opt. Lett. 30, 2092-4 (2005). https://doi.org/10.1364/OL.30.002092
  11. T. Kreis, M. Adams, and W. Jüptner, "Methods of digital holography:a comparison," Proc. SPIE 3098, 224-233 (1997).
  12. F. Zhang and I. Yamaguchi, "Algorithm for reconstruction of digital holograms with adjustable magnification," Opt. Lett. 29, 1688-1670 (2004).
  13. J. Gass, A. Dakoff, and M. K. Kim, "Phase imaging without $2{\pi}$ ambiguity by multiwavelength digital holography," Opt. Lett. 28, 1141-1143 (2003). https://doi.org/10.1364/OL.28.001141
  14. L. Bluestein, "A linear filtering approach to the computation of discrete fourier transform," IEEE Trans. Audio Electroacoust 18, 451-455 (1970). https://doi.org/10.1109/TAU.1970.1162132
  15. J. F. Restrepo and J. Garcia-Sucerquia, "Magnified reconstruction of digitally recorded holograms by Fresnel- Bluestein transform," Appl. Opt. 49, 6430-6435 (2010). https://doi.org/10.1364/AO.49.006430
  16. J. W. Goodman, Introduction to Fourier Optics (Roberts & Company Publishers, USA, 2005)
  17. H. Cho, D. Kim, S. Shin, W. Jang J. Son, and Y. Yu, "Twin-image elimination in an in-line digital holographic microscope," J. Korean Phys. Soc. 52, 1031-1035 (2008). https://doi.org/10.3938/jkps.52.1031
  18. H. Cho, J. Woo, D. Kim, S. Shin, and Y. Yu, "DC suppression in in-line digital holographic microscope on the basis of an intensity-averaging method using variable pixel numbers," Optics & Laser Tech. 41, 741-745 (2009). https://doi.org/10.1016/j.optlastec.2009.01.001