DOI QR코드

DOI QR Code

Assessment of Ambipolar Behavior of a Tunnel FET and Influence of Structural Modifications

  • Narang, Rakhi (Semiconductor Device Research Laboratory, Department of Electronic Science, University of Delhi, South Campus) ;
  • Saxena, Manoj (Department of Electronics, Deen Dayal Upadhyaya, College, University of Delhi) ;
  • Gupta, R.S. (Department of Electronics and Communication Engineering, Maharaja Agrasen Institute of Technology) ;
  • Gupta, Mridula (Semiconductor Device Research Laboratory, Department of Electronic Science, University of Delhi, South Campus)
  • Received : 2012.08.01
  • Published : 2012.12.31

Abstract

In the present work, comprehensive investigation of the ambipolar characteristics of two silicon (Si) tunnel field-effect transistor (TFET) architectures (i.e. p-i-n and p-n-p-n) has been carried out. The impact of architectural modifications such as heterogeneous gate (HG) dielectric, gate drain underlap (GDU) and asymmetric source/drain doping on the ambipolar behavior is quantified in terms of physical parameters proposed for ambipolarity characterization. Moreover, the impact on the miller capacitance is also taken into consideration since ambipolarity is directly related to reliable logic circuit operation and miller capacitance is related to circuit performance.

Keywords

References

  1. T. Krishnamohan, K. Donghyun S. Raghunathan, K. Saraswat, "Double-Gate Strained-Ge Heterostructure Tunneling FET (TFET) with record high drive currents and<<60mV/dec subthreshold slope", Proc. IEDM, 2008, pp. 1-3.
  2. W. Y. Choi, B. G. Park, J. D. Lee, and T. J. K. Liu, "Tunneling field-effect transistors (TFETs) with subthreshold swing (SS) less than 60 mV/dec", Electron Device Letters, IEEE, vol. 28, no. 8, pp. 743-45, Aug., 2007. https://doi.org/10.1109/LED.2007.901273
  3. R. Gandhi, C. Zhixian, N. Singh, K. Banerjee, and L. Sungjoo, "Vertical Si-Nanowire n-Type Tunneling FETs With Low Subthreshold Swing (${\leq}$ 50 mV/decade) at Room Temperature", Electron Device Letters, IEEE, Vol. 32, no. 4, pp. 437-439, Apr., 2011. https://doi.org/10.1109/LED.2011.2106757
  4. R. Gandhi, C. Zhixian, N. Singh, K. Banerjee, and L. Sungjoo, "CMOS-Compatible Vertical-Silicon-Nanowire Gate-All-Around p-Type Tunneling FETs With ${\leq}$ 50-mV/decade Subthreshold Swing", Electron Device Letters, IEEE, Vol. 32, no. 11, pp. 1504-1506, Nov., 2011. https://doi.org/10.1109/LED.2011.2165331
  5. A. S. Verhulst, W. G. Vandenberghe, K. Maex, and G. Groeseneken, "Tunnel field-effect transistor without gate-drain overlap", Applied Phyics Letters, Vol. 91, pp. 053102, Jul., 2007. https://doi.org/10.1063/1.2757593
  6. S. Mookerjea, R. Krishnan, S. Datta, and V. Narayanan, "Effective Capacitance and Drive Current for Tunnel FET (TFET) CV/I Estimation", Electron Devices, IEEE Tranactions on, vol. 56, no. 9, pp. 2092-98, Sept., 2009. https://doi.org/10.1109/TED.2009.2026516
  7. K. Boucart and A. M. Ionescu, "Double-Gate Tunnel FET With $High-{\kappa}$ Gate Dielectric", Electron Devices, IEEE Tranactions on, Vol. 54, no. 7, pp. 1725-1733, Jul., 2007. https://doi.org/10.1109/TED.2007.899389
  8. W. Y. Choi and W. Lee, "Hetero-Gate-Dielectric Tunneling Field-Effect Transistors", Electron Devices, IEEE Tranactions on, Vol. 57 no. 9, pp. 2317-2319, Sept., 2010. https://doi.org/10.1109/TED.2010.2052167
  9. W. G. Vandenderghe and A S. Verhulst, "Tunnel Field-Effect Transistor With Gated Tunnel Barrier", US Patent no. 8,120,115 B2, Feb., 2012.
  10. S. Mookerjea and S. Datta, "Comparative Study of Si, Ge and InAs Based Steep Subthreshold Slope Tunnel Transistors for 0.25V Supply Voltage Logic Applications", Proc. DRC, Jun. 2008, pp. 47-48.
  11. V. Nagavarapu, R. Jhaveri, and J. C. S. Woo, "The Tunnel Source (PNPN) n MOSFET: A Novel High Performance Transistor," Electron Devices, IEEE Tranactions on, vol. 55, no. 4, pp. 1013-1019, Apr., 2008. https://doi.org/10.1109/TED.2008.916711
  12. S. Cho, M. -C. Sun, G. Kim, T. I. Kamins, B. -G. Park, and J. S. Harris, Jr., "Design Optimization of a Type-I Heterojunction Tunneling Field-Effect Transistor (I-HTFET) for High Performance Logic Technology," J. Semicond. Technol. Sci., vol. 11, no. 3, pp. 182-189, Sep., 2011. https://doi.org/10.5573/JSTS.2011.11.3.182
  13. ATLAS User's guide, SILVACO International, Version 5.14.0.R, 2010.
  14. K. E. Moselund, H. Ghoneim, M. T. Bjork, H. Schmid, S. Karg, E. Lortscher, W. Riess, and H. Riel, "Comparison of VLS grown Si NW tunnel FETs with different gate stacks", Proc. ESSDERC, Sept. 2009, pp. 448-451.
  15. Hraziia, A. Vladimirescu, A. Amara, and C. Anghel, "An analysis on the ambipolar current in Si double-gate tunnel FETs", Solid State Electronics, Vol. 70, pp. 67-72 Apr., 2012, https://doi.org/10.1016/j.sse.2011.11.009
  16. M. Masahara, R. Surdeanu, L. Witters, G. Doornbos, V.H. Nguyen, G. Van den bosch, C. Vrancken, K. Devriendt, F. Neuilly, E. Kunnen, M. Jurczak, and S. Biesemans, "Demonstration of Asymmetric Gate-Oxide Thickness Four-Terminal FinFETs Having Flexible Threshold Voltage and Good Subthreshold Slope", Electron Device Letters, IEEE , vol. 28, no. 3, pp. 217-219, Mar., 2007. https://doi.org/10.1109/LED.2007.891303
  17. Adkisson et. al., "Lateral Diffusion field effect transistor with asymmetric gate dielectric profile", US patent no. 7, 829, 945 B2, Nov., 2010.
  18. J. -S. Jang and W. Y. Choi, "Ambipolarity Characterization of Tunneling Field-Effect Transistors", Proc. Silicon Nanoelectronics Workshop (SNW), 2010 Jun., 2010, pp. 1-2.
  19. J. -S Jang and W. Y. Choi, "Ambipolarity Factor of Tunneling Field-Effect Transistors (TFETs)", J. Semicond. Technol. Sci., vol. 11, no. 4, pp. 272-277, Dec., 2011. https://doi.org/10.5573/JSTS.2011.11.4.272
  20. A. Tura, Z. Zhang, P. Liu, Y-H. Xie, and J. C. S. Woo, "Vertical Silicon p-n-p-n Tunnel nMOSFET With MBE-Grown Tunneling Junction", Electron Devices, IEEE Tranactions on, Vol. 58, No. 7, pp. 1907-1913, Jul., 2011. https://doi.org/10.1109/TED.2011.2148118
  21. Y. Yang, X. Tong, L. T. Yang, P. F. Guo, L. Fan, and Y. C. Yeo, "Tunneling field-effect transistor: capacitance components and modeling", Electron Device Letters, IEEE , Vol. 31, no. 7, pp. 752-4, Jul., 2010. https://doi.org/10.1109/LED.2010.2047240
  22. J. Zhuge, A. S. Verhulst, W. G. Vandenberghe, W. Dehaene, R. Huang, Y. Wang, and G. Groeseneken, "Digital-circuit analysis of short-gate tunnel FETs for low-voltage applications", Semicond. Sci. Technol., vol. 26, pp. 085001-085008, Apr., 2011. https://doi.org/10.1088/0268-1242/26/8/085001
  23. J. Singh, K. Ramakrishnan, S. Mookerjea, S. Datta, N. Vijaykrishnan, and D. Pradhan, "A novel Si-Tunnel FET based SRAM design for ultra lowpower 0.3V VDD applications", Proc. Asia and South Pacific Design Automation Conference, 2010, pp. 181-186.

Cited by

  1. Impact of Temperature Variations on the Device and Circuit Performance of Tunnel FET: A Simulation Study vol.12, pp.6, 2013, https://doi.org/10.1109/TNANO.2013.2276401
  2. Effect of spacer dielectrics on performance characteristics of Ge-based tunneling field-effect transistors vol.53, pp.6S, 2014, https://doi.org/10.7567/JJAP.53.06JE05
  3. Thoughts on Possible Future Charge-Based Technologies for Nano-Electronics vol.61, pp.11, 2014, https://doi.org/10.1109/TCSI.2014.2335011
  4. An Analytical Modeling and Simulation of Dual Material Double Gate Tunnel Field Effect Transistor for Low Power Applications vol.9, pp.1, 2014, https://doi.org/10.5370/JEET.2014.9.1.247
  5. Modeling and TCAD Assessment for Gate Material and Gate Dielectric Engineered TFET Architectures: Circuit-Level Investigation for Digital Applications vol.62, pp.10, 2015, https://doi.org/10.1109/TED.2015.2462743
  6. An Analytical Model for Tunnel Barrier Modulation in Triple Metal Double Gate TFET vol.62, pp.7, 2015, https://doi.org/10.1109/TED.2015.2434276
  7. A Recessed-channel Tunnel Field-Effect Transistor (RTFET) with the Asymmetric Source and Drain vol.16, pp.5, 2016, https://doi.org/10.5573/JSTS.2016.16.5.635
  8. Reconfigurable U-shaped tunnel field-effect transistor vol.14, pp.20, 2017, https://doi.org/10.1587/elex.14.20170758
  9. Performance analysis of InAs- and GaSb-InAs-based independent gate tunnel field effect transistor RF mixers vol.16, pp.3, 2017, https://doi.org/10.1007/s10825-017-1005-8
  10. A Barrier Controlled Charge Plasma-Based TFET With Gate Engineering for Ambipolar Suppression and RF/Linearity Performance Improvement vol.64, pp.6, 2017, https://doi.org/10.1109/TED.2017.2693679
  11. Controlling the ambipolarity and improvement of RF performance using Gaussian Drain Doped TFET pp.1362-3060, 2017, https://doi.org/10.1080/00207217.2017.1409807
  12. Electrostatically doped tunnel CNTFET model for low-power VLSI circuit design pp.1572-8137, 2018, https://doi.org/10.1007/s10825-018-1240-7
  13. Fully Analytical Carrier-Based Charge and Capacitance Model for Hetero-Gate-Dielectric Tunneling Field-Effect Transistors vol.65, pp.8, 2018, https://doi.org/10.1109/TED.2018.2849742
  14. Fringing-field-based 2-D analytical model for a gate-underlap double-gate TFET pp.1572-8137, 2018, https://doi.org/10.1007/s10825-018-1234-5
  15. Approach to suppress ambipolarity and improve RF and linearity performances on ED-Tunnel FET vol.13, pp.5, 2018, https://doi.org/10.1049/mnl.2017.0814
  16. TFET performance optimization using gate work function engineering pp.0974-9845, 2019, https://doi.org/10.1007/s12648-018-01371-w
  17. Demonstration of Fin-Tunnel Field-Effect Transistor with Elevated Drain vol.10, pp.1, 2019, https://doi.org/10.3390/mi10010030