DOI QR코드

DOI QR Code

Comparison of Two Ovarian Malignancy Prediction Models Based on Age Sonographic Findings and Serum Ca125 Measurement

  • Arab, Maliheh (Gynecology-Oncology, Imam Hossein Medical Center, Shahid Beheshti University of Medical Sciences) ;
  • Yaseri, Mehdi (School of Public Health and Institute of Public Health Research, Tehran University of Medical Sciences) ;
  • Ashrafganjoi, Tahereh (Gynecology-Oncology, Imam Hossein Medical Center, Shahid Beheshti University of Medical Sciences) ;
  • Maktabi, Maryam (Obstetrics and Gynecology, Imam Hossein Medical Center, Shahid Beheshti University of Medical Sciences) ;
  • Noghabaee, Giti (General physician, Imam Hossein Medical Center, Shahid Beheshti University of Medical Sciences) ;
  • Sheibani, Kourosh (Clinical Research and Development Center, Imam Hossein Medical Center, Shahid Beheshti University of Medical Sciences)
  • Published : 2012.08.31

Abstract

Objective: The aim of our study is to compare an ovarian malignancy prediction model based on age and four sonographic findings (OMPS1) with a new model called OMPS2 which differs just by adding serum CA125 measurement to (OMPS1). Methods: In a cross sectional comparative study OMPS1 was validated in 830 operated ovarian masses within a 3 years period (2006-2009). Logistic regression analysis was used to construct OMPS2 based on OMPS1 adding serum CA125 findings. The area under the curve for two models was compared in 411 patients. Results: OMPS2 was calculated as follows: OMPS1 + 1.444 (if serum CA125= 36-200) or 3.842 (if serum CA125 is more than 200). AUC of OMPS2 was increased to 84.3% (CI 95% 78.1- 89.8) in comparison to OMPS1 with AUC of 78.1% (CI 95% 71.8-84.5). Conclusion: Our second model is more accurate in prediction of ovarian malignancy, compared with our first model.

Keywords

References

  1. Arab M, Yaseri M, Farzaneh M, et al (2010). The construction and validation of a new ovarian malignancy probability score (OMPS) for prediction of ovarian malignancy. Iran J Cancer Prev, 3, 132-8.
  2. Baker TR, Piver MS (1994). Etiology, biology , and epidemiology of Ovarian Cancer. Semin Surg Oncol, 10, 242-8. https://doi.org/10.1002/ssu.2980100403
  3. Benedet JL, Bender H, Jones lll (2000). Ngan hys, pecorelli s. figo staging classifications and clinical practice guidelines in the management of gynecologic cancers. Int J Gynecol Oobstet, 70, 409-62.
  4. Benjapibal M, Neungton C (2007). Pre-operative prediction of serum CA125 level in women with Ovarian masses. J Med Assoc Thai, 90, 1986-91.
  5. BenJopibal M, Sunsancvitayakul P, Phatihattakorn C, Suphanit I, lamurairat W (2003). Sonographic morphological pattern in the pre-operative prediction of ovarian masses. J Med Assoc Thai, 86, 332-7.
  6. Boente MP, Schilder R, Ozols RF (1999). Gynecological Cancers. Cancer Chemother Biol Response Modif, 18, 418-34.
  7. Campos Torres JC, Mauricette Derchain SF, Faundes A, et al (2002). Risk of malignancy index in preoperative evaluation of clinically restricted ovarian cancer. Sao Paulo Med j, 120, 72-6. https://doi.org/10.1590/S1516-31802002000300003
  8. Caruso A, Caforio L, Testa Ac, et al (1996). Transvaginal color doppler ultrasonography in the presurgical characterization of adnexal masses. Gynecol Oncol, 63, 184-91. https://doi.org/10.1006/gyno.1996.0304
  9. Depriest PD, Vartner E, Powell J (1999). The efficacy of a sonographic morphology index in identifying ovarian cancer: a multi-institution of investigation. Gynecol Oncol, 55, 174-8.
  10. Diamandis EP, Scorilas A, Fracchioli S (2003). Human kallikrein 6(HK6): a new potential serum biomarker for diagnosing and prognosis of ovarian carcinoma. J clin oncol, 21, 1035-43. https://doi.org/10.1200/JCO.2003.02.022
  11. Edgell T, Roussety GM, Barker G, et al (2010). Phase II biomarker Trial of a multimarker diagnostic for Ovarian Cancer, 136, 1079-88. https://doi.org/10.1007/s00432-009-0755-5
  12. Enakpene CA, Omigbodun AO, Geocke TW, Odukogbe AT, Beckmann MW (2009). Preoperative evaluation and triage of women with Suspicious adnexal masses using risk of malignancy index. J Obstet Gynecol, 35, 131-8.
  13. Holschneider CH, Berek JS (2000). Ovarian cancer: epidemiology, biology, and prognostic factors. Semin Surg Oncol, 19, 3-10. https://doi.org/10.1002/1098-2388(200007/08)19:1<3::AID-SSU2>3.0.CO;2-S
  14. Javitt MC (2007). ACR appropriateness criteria on staging and follow up of ovarian cancer. J AM Coll Radiol, 4, 586-9. https://doi.org/10.1016/j.jacr.2007.05.019
  15. Kinkel K, Hricak H, IU Y, Tsuda K, Filly RA (2000). Us characterization of ovarian masses: a meta-analysis. Radiology, 217, 803-11. https://doi.org/10.1148/radiology.217.3.r00dc20803
  16. Kurjak A, Predanic M (1992). New scoring system for prediction of ovarian malignancy based on transvaginal color dopplor sonography. J Ultrasound Med, 11, 631-8. https://doi.org/10.7863/jum.1992.11.12.631
  17. Leelahakorn S, TangjiTamol S, Manusirivithaya (2005). Comparison of ultrasound Score, CA125, Menopausal Status , and risk of malignancy index in differentiating between benign and borderline or malignant Ovarian tumors. J Med Assoc Thai, 88, 22-30.
  18. Marjunath AP, Pratapkumar, Sujatha K, Vani R (2001). Comparison of three risk of malignancy indices in evaluation of pelvic masses. Gynecol Oncol, 81, 225-9. https://doi.org/10.1006/gyno.2001.6122
  19. Mederiros LR, Fachel JM, Garry K, Stein AT, Furness S (2005). Laparascopy versus laparatomy for benign ovarian tumors. Cochrane Database of Systematic Reviews, 3, 1002-10.
  20. Moolthiya W, Yuenyao P (2009). The risk of malignancy index (rmi) in diagnisis of ovarian malignancy. Asian Pac J Cancer Prev, 10, 865-68.
  21. Obeidat BR, Amarin ZO, Latimer JA (2004). Risk of malignancy index in the preoperative evaluation of pelvic masses. Int J Gynaecol Obstet, 85, 255-8. https://doi.org/10.1016/j.ijgo.2003.10.009
  22. Oriel KA, Hartenbach EM, Remington PL (1999). Trends in United States Ovarian Cancer mortality, 1979-1995. Obstet Gynecol, 93, 30-3. https://doi.org/10.1016/S0029-7844(98)00397-4
  23. Rufford BD, Jacobs J (2003). Ovarian cysts in postmen opausal women. RCOG Guided, 34, 1-8.
  24. Soegaard R, Knudsen A, Rix P (2003). Risk of malignancy index in the preoperative evaluation of patients with adnexal masses. Gynecol oncol, 90, 109-12. https://doi.org/10.1016/S0090-8258(03)00192-6
  25. Szpurek D, Moszynski R, Smolen A, Sajdak S (2005). Artificial neural network computer prediction of ovarian malignancy in women with adnexal masses. Int J Gynecol Obstet, 89, 108-13. https://doi.org/10.1016/j.ijgo.2005.01.034
  26. Szpurek O, Moszynski P, zietkowiak W, Spaczynski M, Sajdak S (2005).An ultrasonographic morphological index for prediction of ovarian tumor malignancy. Eur J Gynecol Oncol, 26, 51-4.
  27. Trim Bus JB,Vergote I, Bolis G, et al (2003). Impact of adjuvant chemotherapy and Surgical Staging in early-stage ovarian carcinoma: european organization for research and treatment of cancer-adjuvant chemotherapy in ovarian neoplasm trial. J Natl Cancer Inst, 95, 113-25. https://doi.org/10.1093/jnci/95.2.113
  28. Ulusoy S, Akbayir O, Numanoglu C (2007). The risk of malignancy index in discrimination of adnexal masses. Int J Gynecol Obstet, 96, 186-91.
  29. Valentin L (1999). Prospective cross-validation of Doppler ultrasound examination and gray-scale ultrasound imaging for discrimination of benign and malignant pelvic masses. Ultrasound Obstet Gynecol, 14, 273-83. https://doi.org/10.1046/j.1469-0705.1999.14040273.x
  30. Valentin L, Hagen B, Tingulstad S, Eik-Nes S (2001). Comparison of pattern recognition and logistic regression models for discrimination between benign and malignant pelvic masses: a prospective cross validation. Ultrasound Obstet Gynecol, 18, 357-65. https://doi.org/10.1046/j.0960-7692.2001.00500.x
  31. Valentin L (2004). Use of morphology to characterize and manage common adnexal masses. Best Pract Res Clin Obstet Gynaecol, 18, 71-89. https://doi.org/10.1016/j.bpobgyn.2003.10.002
  32. Vernooij F, Heintz P, Witteveen E, Vendergraf Y (2007). The outcomes of ovarian cancer treatment are better when provided by gynecologic oncologists and in specialized hospitals: a systematic review. Gynecl Oncol, 105, 801-12. https://doi.org/10.1016/j.ygyno.2007.02.030
  33. Winter WE, Maxwel GL, Tian C, et al (2007). Prognostic factors for stage iii epithelial ovarian cancer: a gynecologic oncology group study. J Clin Oncol, 23, 3621-7.

Cited by

  1. IOTA Simple Rules in Differentiating between Benign and Malignant Ovarian Tumors vol.15, pp.13, 2014, https://doi.org/10.7314/APJCP.2014.15.13.5123
  2. Comparison of Neutrophil/Lymphocyte and Platelet/Lymphocyte Ratios for Predicting Malignant Potential of Suspicious Ovarian Masses in Gynecology Practice vol.15, pp.15, 2014, https://doi.org/10.7314/APJCP.2014.15.15.6239