References
- R. Kirchain and L. Kimerling, "A roadmap for nanophotonics," Nat. Photon. 1, 303-305 (2007). https://doi.org/10.1038/nphoton.2007.84
- S. A. Maier, M. L. Brongersma, P. G. Kik, S. Meltzer, A. A. G. Requicha, and H. A. Atwater, "Plasmonics-a route to nanoscale optical devices," Adv. Mater. 13, 1501-1505 (2001). https://doi.org/10.1002/1521-4095(200110)13:19<1501::AID-ADMA1501>3.0.CO;2-Z
- P. Tuchscherer, "Analytic coherent control of plasmon propagation in nanostructures," Opt. Express 17, 14235-14259 (2009). https://doi.org/10.1364/OE.17.014235
- W. L. Barnes, A. Darnes, A. Dereux, and T. W. Ebbesen, "Surface plasmon subwavelength optics," Nature 242, 824-830 (2003).
- Q. Zhang, X. G. Huang, X. S. Lin, J. Tao, and X. P. Jin, "A subwavelength coupler-type MIM optical filter," Opt. Express 17, 7549-7554 (2009). https://doi.org/10.1364/OE.17.007549
- N. Talebi, A. Mahjoubfar, and M. Shahabadi, "Plasmonic ring resonator," J. Opt. Soc. Am. B 25, 2116-2122 (2008). https://doi.org/10.1364/JOSAB.25.002116
- D. K. Gramotnev and S. I. Bozhevolnyi, "Plasmonics beyond the diffraction limit," Nat. Photonics 4, 83-91 (2010). https://doi.org/10.1038/nphoton.2009.282
- E. Ozbay, "Plasmonics: merging photonics and electronics at nanoscales dimensions," Science 311, 189-193 (2006). https://doi.org/10.1126/science.1114849
- J. Jung, "Optimal design of dielectric-loaded surface plasmon polaritons waveguide with genetic algorithm," J. Opt. Soc. Korea 14, 277-281 (2010). https://doi.org/10.3807/JOSK.2010.14.3.277
- B. Jafarian, N. Nozhat, and N. Granpayeh, "Analysis of a triangular-shaped plasmonic metal-insulator-metal Bragg grating waveguide," J. Opt. Soc. Korea 15, 118-123 (2011). https://doi.org/10.3807/JOSK.2011.15.2.118
- H. Lu, X. Liu, Y. Gong, L. Wang, and D. Mao, "Multi-channel plasmonic waveguide filters with disk-shaped nanocavities," Opt. Commun. 284, 2613-2616 (2011). https://doi.org/10.1016/j.optcom.2011.01.046
- A. Setayesh, S. R. Mirnaziry, and M. S. Abrishamian, "Numerical investigation of tunable band-pass\band-stop plasmonic filters with hollow-core circular ring resonator," J. Opt. Soc. Korea 15, 82-89 (2011). https://doi.org/10.3807/JOSK.2011.15.1.082
- G. Wang, H. Lu, X. Liu, D. Mao, and L. Duan, "Tunable multi-channel wavelength demultiplexer based on MIM plasmonic nanodisk resonator at telecommunication regime," Opt. Express 19, 3513-3518 (2011). https://doi.org/10.1364/OE.19.003513
- Z. Lu and W. Zhao, "Nanoscale electro-optic modulators based on grapheme-slot waveguides," J. Opt. Soc. Am. B 29, 1490-1496 (2012). https://doi.org/10.1364/JOSAB.29.001490
- S. Kim, Y. T. Byun, D. G. Kim, N. Dagli, and Y. Chung, "Widely tunable coupled-ring reflector laser diode consisting of square ring resonators," J. Opt. Soc. Korea 14, 38-41 (2010). https://doi.org/10.3807/JOSK.2010.14.1.038
- M. Farahani, N. Granpayeh, and M. Rezvani, "Broadband zero reflection plasmonic junctions," J. Opt. Soc. Am. B 29, 1722-1730 (2012).
- J. H. Jung and M. W. Kim, "Optimal design of fiber-optic surface plasmon resonance sensors," J. Opt. Soc. Korea 11, 55-58 (2007). https://doi.org/10.3807/JOSK.2007.11.2.055
- K. M. Byun, "Development of nanostructured plasmonic substrates for enhanced optical biosensing," J. Opt. Soc. Korea 14, 65-76 (2010). https://doi.org/10.3807/JOSK.2010.14.2.065
- H. Lu, X. Liu, L. Wang, Y. Gong, and D. Mao, "Ultrafast all-optical switching in nanoplasmonic waveguide with Kerr nonlinear resonator," Opt. Express 19, 2910-2915 (2011). https://doi.org/10.1364/OE.19.002910
- H. Wei, Z. Wang, X. Tian, M. Kall, and H. Xu, "Cascaded logic gates in nanophotonic plasmon networks," Nature Commun. 1388, 1-5 (2011).
- I. S. Maksymov, "Optical switching and logic gates with hybrid plasmonic-photonic crystal nanobeam cavities," Phys. Lett. A 375, 819-921 (2011).
- G. Y. Oh, D. G. Kim, and Y. W. Choi, "All-optical logic gate using waveguide-type SPR with Au/ZnO plasmon stack," in Proc. Opto Electron. and Commun. Conference (Japan, 2010), pp. 374-375.
- Q. Xu and M. Lispon, "All-optical logic based on silicon micro-ring resonators," Opt. Express 15, 924-929 (2007). https://doi.org/10.1364/OE.15.000924
- T. K. Liang, L. R. Numes, M. Tsuchiya, K. S. Abedin, T. Miyazaki, D. V. Thourhout, W. Bogaetrs, P. Dumon, R. Baets, and H. K. Tsang, "High speed logic gate using twophoton absorption in silicon waveguides," Opt. Commun. 256, 171-174 (2006).
- J. H. Kim, B. K. Kang, Y. H. Park, Y. T. Byun, S. Lee, D. H. Woo, and S. H. Kim, "All-optical AND gate using XPM wavelength converter," J. Opt. Soc. Korea 5, 25-28 (2001). https://doi.org/10.3807/JOSK.2001.5.1.025
- S. Kaur and R. S. Kaler, "Ultrahigh speed reconfigurable logic operations based on single semiconductor optical amplifier," J. Opt. Soc. Korea 16, 13-16 (2012). https://doi.org/10.3807/JOSK.2012.16.1.013
- T. Yabu, M. Geshibo, T. Kitamura, K. Nishida, and S. Sawa, "All-optical logic gates containing a two-mode nonlinear waveguide," IEEE J. Quantum Electron. 38, 37-46 (2009).
- Y. H. Pramono and Endarko, "Nonlinear waveguide for optical logic and computation," J. Nonlin. Opt. Phys. and Mater. 10, 209-222 (2001). https://doi.org/10.1142/S0218863501000553
- H. Lu, X. Liu, D. Mao, L. Wang, and Y. Gong, "Tunable band-pass plasmonic waveguide filters with nanodisk resonators," Opt. Express 18, 17922-17927 (2010). https://doi.org/10.1364/OE.18.017922
- T. B. Wang, X. W. Wen, C. P. Yin, and H. Z. Wang, "The transmission characteristics of surface plasmon polaritons in ring resonator," Opt. Express 17, 24096-24101 (2009). https://doi.org/10.1364/OE.17.024096
- Y. Hwang, J. E. Kim, H. Y. Park, and C. S. Kee, "Plasmonic stop band formation in a metal-insulator-metal ring with a narrow gap," J. Opt. 13, 075006-5 (2011). https://doi.org/10.1088/2040-8978/13/7/075006
- A. Boltasseva, "Plasmonic components fabrication via nanoimprint," J. Opt. A: Pure Appl. Opt. 11, 114001-114012 (2009). https://doi.org/10.1088/1464-4258/11/11/114001
- C. A. Balanis, Advanced Engineering Electromagnetics (Wiley, AZ, USA, 1989).
- A. Taflove and S. C. Hagness, Computational Electrodynamics: The Finite-difference Time-domain Method, 3rd ed. (Artech House, Boston, MA, USA, 2005).
- V. P. Nelson, H. T. Nagel, B. D. Carrol, and J. D. Irwin, Digital Logic Circuit Analysis and Design (Prentice Hall, NJ, USA, 1995).
- J. A. Dionne, L. A. Sweatlock, H. A. Atwater, and A. Polman, "Plasmon slot waveguides," Opt. Express 13, 9652-9659 (2005). https://doi.org/10.1364/OPEX.13.009652
Cited by
- Performance Analysis of a High-Speed All-Optical Subtractor using a Quantum-Dot Semiconductor Optical Amplifier-Based Mach-Zehnder Interferometer vol.18, pp.1, 2014, https://doi.org/10.3807/JOSK.2014.18.1.065
- A Novel Plasmonic Sensor Based on Metal–Insulator–Metal Waveguide With Side-Coupled Hexagonal Cavity vol.7, pp.2, 2015, https://doi.org/10.1109/JPHOT.2015.2419635
- All-optical logic gates based on nonlinear plasmonic ring resonators vol.54, pp.26, 2015, https://doi.org/10.1364/AO.54.007944
- Dynamic Load-Balancing Algorithm Incorporating Flow Distributions and Service Levels for an AOPS Node vol.18, pp.5, 2014, https://doi.org/10.3807/JOSK.2014.18.5.466
- L-shaped filter, mode separator and power divider based on plasmonic waveguides with nanocavity resonators vol.9, pp.6, 2015, https://doi.org/10.1049/iet-opt.2014.0094
- All-Optical Binary Full Adder Using Logic Operations Based on the Nonlinear Properties of a Semiconductor Optical Amplifier vol.19, pp.3, 2015, https://doi.org/10.3807/JOSK.2015.19.3.222
- Plasmonic Directional Couplers Based on Multi-Slit Waveguides vol.12, pp.3, 2017, https://doi.org/10.1007/s11468-016-0303-5
- High Quality Plasmonic Sensors Based on Fano Resonances Created through Cascading Double Asymmetric Cavities vol.16, pp.12, 2016, https://doi.org/10.3390/s16101730
- Tunable plasmonic filter with circular metal–insulator– metal ring resonator containing double narrow gaps vol.86, pp.5, 2016, https://doi.org/10.1007/s12043-015-1127-0
- All-optical XOR and NAND logic gates based on plasmonic nanoparticles vol.392, 2017, https://doi.org/10.1016/j.optcom.2017.02.007
- Investigating the optical AND gate using plasmonic nano-spheres vol.15, pp.1, 2016, https://doi.org/10.1007/s10825-015-0747-4
- Plasmonic circuits for manipulating optical information vol.6, pp.3, 2017, https://doi.org/10.1515/nanoph-2016-0131
- A high throughput supra-wavelength plasmonic bull’s eye photon sorter spatially and spectrally multiplexed on silica optical fiber facet vol.21, pp.23, 2013, https://doi.org/10.1364/OE.21.028083
- Improved Plasmonic Filter, Ultra-Compact Demultiplexer, and Splitter vol.18, pp.3, 2014, https://doi.org/10.3807/JOSK.2014.18.3.261
- A Plasmonic Temperature-Sensing Structure Based on Dual Laterally Side-Coupled Hexagonal Cavities vol.16, pp.5, 2016, https://doi.org/10.3390/s16050706
- All-optical logic gates in plasmonic metal–insulator–metal nanowaveguide with slot cavity resonator vol.11, pp.2, 2017, https://doi.org/10.1117/1.JNP.11.026001
- Applications of ultracompact aperture-coupled plasmonic slot cavity with spectrally splitting capability vol.12, pp.01, 2018, https://doi.org/10.1117/1.JNP.12.016010
- Optical Toffoli and Feynman reversible gates designing using DNA transmission lines vol.50, pp.8, 2018, https://doi.org/10.1007/s11082-018-1590-1
- Nanoscale all-optical logic devices vol.62, pp.4, 2019, https://doi.org/10.1007/s11433-018-9289-3
- Tunable single-mode bandpass filter based on metal–insulator–metal plasmonic coupled U-shaped cavities pp.1751-8776, 2019, https://doi.org/10.1049/iet-opt.2018.5098