DOI QR코드

DOI QR Code

F-X 필터와 중앙값 필터를 연속적으로 사용한 파랑잡음 제거

Swell Noise Attenuation Using a Cascade of F-X Filter and Median Filter

  • 김수관 (한국해양과학기술원 부설 극지연구소) ;
  • 홍종국 (한국해양과학기술원 부설 극지연구소)
  • 투고 : 2012.10.22
  • 심사 : 2012.11.24
  • 발행 : 2012.11.30

초록

파랑잡음과 같은 강한 진폭의 무작위 잡음은 일반적인 해양탄성파 자료처리 과정에서 쉽게 제거되지 않는다. 이 논문에서는 파랑잡음을 제거하기 위하여 F-X 필터와 중앙값 필터를 연속적으로 적용하였다. 시험자료는 2010년 12월 남극반도의 북쪽에 위치한 남셰틀랜드군도 북부해역에서 획득한 해양탄성파 자료로서 일부 측선의 자료획득 중에 발생한 악천후로 인하여 강한 파랑잡음이 기록되었다. 파랑잡음이 심한 자료를 대상으로 F-X 필터를 시험 적용한 결과, 무작위 잡음이 대부분 제거되었으나 일부 저주파 잡음은 여전히 강하게 남아있었다. 중앙값 필터를 적용한 결과, 저주파 잡음은 효과적으로 제거되었지만 다른 주파수 영역에 존재하는 무작위잡음이 남아있었다. 이에 두 가지 필터를 연속적으로 적용한 결과, 저주파의 잡음과 무작위 잡음이 모두 효과적으로 제거되었다. 잡음제거 이후, 보다 정밀한 속도분포를 얻을 수 있었으며, 겹쌓기 단면의 신호 대 잡음비는 뚜렷이 개선되었다.

High-amplitude swell noises (HASN) are very difficult to eliminate from the marine seismic data. In this paper, we applied F-X filter and median filter in order to suppress HASN. Test data have been acquired on the northern offshore of the South Shetland Islands in December, 2010. Parts of data have been contaminated by HASN caused by bad weather during the cruise. We applied F-X filter and median filter to test data with HASN. After F-X filtering, most of non-coherent noises and small-amplitude swell noises are eliminated effectively but HASN are still remained significantly. With median filter, HASN was suppressed better than F-X filter, however some of non-coherent noises are still remains. We applied a cascade of two filters and results show HASN and non-coherent noises are suppressed effectively. After the cascade of two filtering, it is possible to define reflection layers clearly on the velocity spectrum and to produce better stacked section with a good signal-to-noise ratio.

키워드

참고문헌

  1. Bednar, J. B., 1983, Applications of median filtering to deconvolution, pulse estimation, and statistical editing of seismic data, Geophysics, 48, 1598-1610. https://doi.org/10.1190/1.1441442
  2. Cambois, G. and Frelet, J., 1995, Can we surgically remove swell noise?, 65th Annual International Meeting, SEG, Expanded Abstracts, 1381-1384.
  3. Canales, L. L., 1984, Random noise reduction, 54th Annual International Meeting, SEG, Expanded Abstracts, 525-527.
  4. Duncan, G. and Beresford, G., 1995, Some analyses of 2-D median f-k filters, Geophysics, 60, 1157-1168. https://doi.org/10.1190/1.1443844
  5. Elboth, T., Fugro Geoteam, Hermansen, D., and Fugo Seismic Imaging, 2009, 79th Annual International Meeting, SEG, Expanded Abstract.
  6. GEDCO, 2010, VISTA processing manual, 1513.
  7. Gulunay, N., 2000, Noncausal spatial prediction filtering for random noise reduction on 3D poststack data, Geophysics, 65, 1641-1653. https://doi.org/10.1190/1.1444852
  8. Jin, Y. K., Lee, M. W., Kim, Y., Nam, S., and Kim, K., 2003, Gas hydrate volume estimations on the South Shetland continental margin, Antarctic Peninsula, Antarctic Science, 15, 271-282. https://doi.org/10.1017/S0954102003001275
  9. Karsli, H., Dondurur, D., and Cifci, G., 2006, Application of complex-trace analysis to seismic data for random-noise suppression and temporal resolution improvement, Geophysics, 71, V79-V86. https://doi.org/10.1190/1.2196875
  10. Kim, Y., Kim, H. S., Larter, R. D., Camerlenghi, A., Gamboa, L. A. P., and Rudowski, S., 1995, Tectonic deformation in the upper crust and sediments at the South Shetland trench, Geol. Seis. Strat. Ant. Mar., Ant. Res. Ser., 68, 157-166.
  11. Klepeis, K. A. and Lawver, L. A., 1996, Tectonics of the Antarctic-Scotia plate boundary near Elephant and Clarence islands, West Antarctica, Journal of Geophysical Research, 101, 20211-20220, 20231. https://doi.org/10.1029/96JB01510
  12. Larter, R. D., Rebesco, M., Vanneste, L., Gamboa, L., and Barker, P., 1997, Cenozoic tectonic, sedimentary and glacial history of the continental shelf west of Graham Land, Antarctic Peninsula, Geology and Seismic stratigraphy of the Antarctic Margin, 2, 1-27.
  13. Liu, C., Liu, Y., Yang, B., Wang, D., and Sun, D., 2006, A 2D multistage median filter to reduce random seismic noise, Geophysics, 71, V105-V110. https://doi.org/10.1190/1.2236003
  14. Livermore, R., Balanya, J. C., Maldonado, A., Martinez, J. R., Fernandez, J. R., Baldeano, C. S., Zaldivar, J. G., Jabaloy, A., Barnolas, A., Somoza, L., Molina, J. H., Surinach, E., and Viseras, C., 2000, Autopsy on a dead spreading center: The Phoenix Ridge, Drake Passage, Antarctica. Geol., 28, 607-610.
  15. Mi, Y. and Margrave, G. F., 2000, Median filtering in Kirchhoff migration for noisy data, 70th Annual International Meeting, SEG, ExpandedAbstracts, 822-925.
  16. Ozbek, A., 2003, Adaptive Seismic Noise and Interference Attenuation Method, U. S. Patent 6 651 007.
  17. Ristau, J. P. and Moon, W. M., 2001, Adaptive filtering of random noise in 2-D geophysical data, Geophysics, 66, 342-349. https://doi.org/10.1190/1.1444913
  18. Schonewille, M., Vigner, A., and Ryder, A., 2008, Swell-noise attenuation using an iterative fx prediction filtering approach, 78th Annual International Meeting, SEG, 2647-2651.
  19. Shepherd, A. M. and McDonald, J. A., 2004, Quantification of swell noise on seismic lines gathered in rough and calm seas. 66th Annual International Conference and Exhibition, EAGE, H023.
  20. Soubaras, R., 1994, Signal-preserving random noise attenuation by the f-x projection, 64th Annual International Meeting, SEG, Expanded Abstracts, 1576-1579.
  21. Tinivella, U. and Accaino, F., 2000, Compressional velocity structure and Poisson's ratio in marine sediments with gas hydrate and free gas by inversion of reflected and refracted seismic data (South Shetland Islands, Antarctica), Marine Geology, 164, 13-27. https://doi.org/10.1016/S0025-3227(99)00123-1
  22. Watts, D. R., Deighan, A. J., and Riedel, C., 1999, Attenuation of marine wave swell noise by stacking in the wavelet packet domain, 69th Annual International Meeting, SEG, Expanded Abstracts, 1220-1223.
  23. Yilmaz, O., 2001, Seismic Data Analysis: Processing, Inversion, and Interpretation of Seismic Data, Society of Exploration Geophysicists, SEG.