DOI QR코드

DOI QR Code

Geostatistical Approach to Integrated Modeling of Iron Mine for Evaluation of Ore Body

철광산의 광체 평가를 위한 지구통계학적 복합 모델링

  • Ahn, Taegyu (Department of Energy and Resources Engineering, Kangwon National University) ;
  • Oh, Seokhoon (Department of Energy and Resources Engineering, Kangwon National University) ;
  • Kim, Kiyeon (Department of Energy and Resources Engineering, Kangwon National University) ;
  • Suh, Baeksoo (Department of Energy and Resources Engineering, Kangwon National University)
  • 안태규 (강원대학교 에너지.자원공학과) ;
  • 오석훈 (강원대학교 에너지.자원공학과) ;
  • 김기연 (강원대학교 에너지.자원공학과) ;
  • 서백수 (강원대학교 에너지.자원공학과)
  • Received : 2012.10.18
  • Accepted : 2012.11.14
  • Published : 2012.11.30

Abstract

Evaluation of three-dimensional ore body modeling has been performed by applying the geostatistical integration technique to multiple geophysical (electrical resistivity, MT) and geological (borehole data, physical properties of core) information. It was available to analyze the resistivity range in borehole and other area through multiple geophysical data. A correlation between resistivity and density from physical properties test of core was also analyzed. In the case study results, the resistivity value of ore body is decreased contrast to increase of the density, which seems to be related to a reason that the ore body (magnetite) includes heavy conductive component (Fe) in itself. Based on the lab test of physical properties in iron mine region, various geophysical, geological and borehole data were used to provide ore body modeling, that is electrical resistivity, MT, physical properties data, borehole data and grade data obtained from borehole data. Of the various geostatistical techniques for the integrated data analysis, in this study, the SGS (sequential Gaussian simulation) method was applied to describe the varying non-homogeneity depending on region through the realization that maintains the mean and variance. With the geostatistical simulation results of geophysical, geological and grade data, the location of residual ore body and ore body which is previously reported was confirmed. In addition, another highly probable region of iron ore bodies was estimated deeper depth in study area through integrated modeling.

복합 물리탐사(전기비저항, MT)와 지질(시추 자료 및 코어 물성)정보에 대해 지구통계학적 복합해석 기법을 적용하여 3차원 광체 모델링 평가를 수행하였다. 우선, 복합 물리탐사를 통해 시추공 및 그 외의 전체적인 지역에 대한 비저항대 분포를 파악할 수 있었으며, 코어 물성 시험을 통해 연구지역의 자철석(광체)이 코어 내부의 밀도가 높은 전도성 성분(Fe)에 의해 밀도의 증가에 따라 비저항이 감소하는 상관관계를 나타냄을 파악하였다. 3차원 광체 모델링을 수행하기 위해 사용된 자료는 전기비저항 탐사, MT 탐사, 물성 자료와 시추 자료 등이며, 전체 획득 자료 및 시추 자료에서 추출한 광체의 품위 자료를 이용하였다. 본 연구에서는 자료의 복합 해석을 위해 지구통계학적 기법 중에서, 부족한 실제 측정 자료의 평균 및 분산을 잘 재생시키는 실현 값을 통해 지역적으로 변화하는 불균질성을 잘 묘사하는 순차 가우시안 시뮬레이션(sequential Gaussian simulation)을 사용하였다. 획득된 전체 자료와 품위 자료만을 이용하여 도출한 시뮬레이션 결과, 광체가 기존에 연구되어 존재하는 잔광체의 일정 부분에서 유사한 분포를 나타냈으며, 추가적으로 하부 깊은 심도에 대해 광체의 분포 양상을 추정할 수 있었다.

Keywords

References

  1. Choi, D. H. et al., 2010, Fe scrutiny report of Yangyang ironmine, KORES, p. 2-5.
  2. Goovaerts, P., 1997, Geostatistics for natural resources evaluation, Oxford University Press, Oxford.
  3. Issaks, E. H., Srivastava, R. M., 1989, An introductions to applied geostatistics, Oxford University Press, Oxford.
  4. Johnson, M., 1987, Multivariate statistical simulation, Wiley, p. 230.
  5. Katsube, T., 1969, The electro-chemical transient phenomena of ore and rock samples (II) (An investigation of measuring apparatus and of transient phenomena of electrode): Butsuritanko, 22, p. 21-33.
  6. Kim, S. J. and Park, H. D., 2009, Development of software for mineral resources estimation and 3D modeling using variogram, KSEG, 46(2), 151-159.
  7. Kim, Y. H. and Choi, Y. K., 1999, Experimental verification of factors affecting core resistivity measurements, Journal of the Korean Geophysical Society, 2(3), 225-233.
  8. Kim, J. D. et al., 2009, A study of validation analysis for reopening of Yangyang iron-mine, Kangwon National University, p. 18-19.
  9. Lee, S. H., 1979, Ore petrological studies on the genesis of the metamorphic iron deposits in southern Korea. Jour. Geol. Soc. Korea, 15, 210-229.
  10. Lee, S. M. and Kim, H. S., 1968, Petrogenesis and the syenite in the Yangyang mine district, Kangwon province, Korea., Jour. Geol. Soc. Korea, 4, 199-214.
  11. Oh, S. H., 2005, RMR evaluation by integration of geophysical and borehole data using non-linear indicator transform and 3D Kriging, The Korean Earth Science Society, 26(5), 429-436.
  12. Park, G. S. et al., 2007, Geostatistical interpretation of sparsely obtained seismic data combined with satellite gravity data, Mulli-Tamsa, 10(4), 252-258.
  13. Park, S. G., 2004, Physical property factors controlling the electrical resistivity of subsurface, Mulli-Tamsa, 7(2), 130-135.

Cited by

  1. Porosity Profiles in Alluvium Soil by Using Electrical Resistivity and Geostatistic Method vol.15, pp.5, 2015, https://doi.org/10.9798/KOSHAM.2015.15.5.147
  2. A Study of 3D Ore-Modeling by Integrated Analysis of Borehole and Geophysical Data vol.16, pp.4, 2013, https://doi.org/10.7582/GGE.2013.16.4.257