DOI QR코드

DOI QR Code

리프팅 기반 2차원 이산 웨이블렛 변환 필터의 효율적인 VLSI 구조

Efficient VLSI Architecture for Lifting-Based 2D Discrete Wavelet Transform Filter

  • 박태구 (가톨릭대학교 정보통신전자공학과 VLSI시스템설계 연구실) ;
  • 박태근 (가톨릭대학교 정보통신전자공학과 VLSI시스템설계 연구실)
  • 투고 : 2012.08.20
  • 심사 : 2012.11.13
  • 발행 : 2012.11.30

초록

본 논문에서는 리프팅 기반의 하드웨어 효율이 100%가 되는 2차원 이산 웨이블릿 변환 필터 구조를 제안한다. 전체구조는 (9,7) 필터를 적용하였으며, 필터의 길이에 따라 확장 및 축소가 가능하다. 본 연구에서 제안하는 새로운 스케줄링은 블록기반으로 수행하며 하위 레벨을 수행할 조건이 충족되면 바로 해당레벨을 수행하므로 중간 값을 저장해야 하는 시간이 짧아지며, 따라서 이를 위한 레지스터 양을 최소화할 수 있다. 제안된 스케줄링에 맞는 입력을 조절하기 위해 그에 적절한 DFC(Data Format Converter)와 DCU(Delay Control Unit)구조를 설계하였다. 입력 영상이 $N{\times}N$이고 m을 필터 길이라고 할 때, 필요한 저장공간은 2mN이다. 인접한 4개의 데이터를 동시에 입력 받아 동시에 행 방향과 열 방향 DWT를 수행하므로 J가 분해 레벨이라고 할 때 총 $N^2(1-2^{-2J})/3$ 사이클이 소요된다.

In this research, we proposed an efficient VLSI architecture of the lifting-based 2D DWT (Discrete Wavelet Transform) filter with 100% hardware utilization. The (9,7) filter structure has been applied and extendable to the filter length. We proposed a new block-based scheduling that computes the DWT for the lower levels on an "as-early-as-possible" basis, which means that the calculation for the lower level will start as soon as the data is ready. Since the proposed 2D DWT computes the outputs of all levels by one row-based scan, the intermediate results for other resolution levels should be kept in storage such as the Data Format Converter (DFC) and the Delay Control Unit (DCU) until they are used. When the size of input image is $N{\times}N$ and m is the filter length, the required storage for the proposed architecture is about 2mN. Since the proposed architecture processes the 2D DWT in horizontal and vertical directions at the same time with 4 input data, the total period for 2D DWT is $N^2(1-2^{-2J})/3$.

키워드

참고문헌

  1. S. Mallat, "A theory for multiresolution signal decomposition: The wavelet representation," IEEE Trans. Pattern Anal. And Machine Intell., vol. 11, no. 7, pp. 674-693, Jul. 1989. https://doi.org/10.1109/34.192463
  2. R. Kronland-Martinet, J. Morlet, and A. Grossmann, "Analysis of sound patterns through wavelet transforms," Int. J. Pattern Recognition and Artificial Intelligence, vol. 1, no. 2, pp. 273-302, Aug. 1987. https://doi.org/10.1142/S0218001487000205
  3. S. Mallat, "Multifrequency channel decompositions of images wavelet models," IEEE Trans. Acoust., Speech, Signal Process., vol. 37, no. 12, pp. 2019-2110, Dec. 1989.
  4. T. Ryan, L. Sanders, H. Fisher, and A. Iverson, "Image compression by texture modeling in the wavelet domain," IEEE Trans. Image Process., vol. 5, no. 1 pp. 26-36, Jan. 1996. https://doi.org/10.1109/83.481668
  5. A. Skodras, C. Christopoulos, and T. Ebrahimi, "JPEG2000: The Upcoming Still Image Compression Standard," Proceedings of Conference of Pattern Recognition, vol. 22, no. 12, pp. 359-366, Oct., 2000.
  6. T. Acharta and C. Chakrabarti, "A Survey on Lifting-based Discrete Wavelet Transform Architectures," J. of VLSI Signal Process., vol. 42, no. 3, pp. 321-339, Mar. 2006. https://doi.org/10.1007/s11266-006-4191-3
  7. M. Ferreti and D. Rizzo, "A parallel architecture for the 2D discrete wavelet transform with Integer Lifting Scheme," J. of VLSI Signal Process., vol. 28, no. 3, pp. 165-186, Jul. 2001. https://doi.org/10.1023/A:1011161423836
  8. G. Jung, D. Jin, and S. Park, "An efficient line based VLSI architecture for 2D lifting DWT," in the 47th IEEE International Midwest Symposium on Circuits and Systems, pp. 248-252, Jul. 2004.
  9. C. Lian, K. Chenm H. Chen, and L. Chen, "Lifting based discrete wavelet transform architecture for JPEG2000," in IEEE ISCAS, pp. 445-448, May. 2001.
  10. Y. Seo and D. Kim, "ASIC Design of Lifting Processor for Motion JPEG2000", J. of KICS, vol. 30, no. 5C, pp.344-354, May, 2005.
  11. K. Andra, C. Chakrabarti, and T. Acharya, "A VLSI architecture for lifting-based forward and inverse wavelet transform," IEEE Trans. Of Signal Process, vol. 50, no. 4, pp. 966-977, Apr. 2002. https://doi.org/10.1109/78.992147
  12. H. Liao, M. Mandal, and B. Cockburn, "Efficient architectures for 1D and 2D lifting-based wavelet transform," IEEE Trans. Signal Process., vol. 52, no. 5, pp. 1315-1326, May. 2004. https://doi.org/10.1109/TSP.2004.826175
  13. S. Barua, J. E. Carletta, K. A. Kotteri, and A. E. Bell, "An efficient architecture for lifting-based two-dimensional discrete wavelet transform," Integr. VLSI J., vol. 38, no. 3, pp. 341-352, Jan. 2005. https://doi.org/10.1016/j.vlsi.2004.07.010
  14. C. Xiong, J. Tian, and J. Liu, "Efficient architectures for two-dimensional discrete wavelet transform using lifting scheme," IEEE Trans. Image Process., vol. 16, no. 3, pp. 607-614, Mar. 2007. https://doi.org/10.1109/TIP.2007.891069
  15. C. Cheng and K. K. Parhi, "High-speed VLSI implementation of 2D discrete wavelet transform," IEEE Trans. Signal Process., vol. 56, no. 1, pp. 393-403, Jan. 2008. https://doi.org/10.1109/TSP.2007.900754