DOI QR코드

DOI QR Code

CFD Performance Analysis and Design of a 8kW Class Radial Inflow Turbine for Ocean Thermal Energy Conversion Using a Working Fluid of Ammonia

암모니아 작동유체를 이용한 해수온도차발전용 8kW급 구심터빈의 설계 및 CFD 성능해석

  • 모장오 (호주 University of Adelaide) ;
  • 차상원 (한국해양대학교 대학원 기관시스템공학과) ;
  • 김유택 (한국해양대학교 기관시스템공학부) ;
  • 임태우 (한국해양대학교 기관공학부) ;
  • 이영호 (한국해양대학교 기계에너지시스템공학부)
  • Received : 2012.08.01
  • Accepted : 2012.11.23
  • Published : 2012.11.30

Abstract

In this research, we analysed design and CFD analysis of an inflow radial turbine for OTEC with an output power of 8kW using an working fluid of ammonia. The inflow radial turbine consists of scroll casing, vain nozzle with 18 blade numbers and rotor blade with 13 blade numbers. Mass flow rate, and inlet temperature are 0.5kg/s and $25^{\circ}C$ respectively, and variable rotational speeds were applied between 12,000 and 36,000 with 3,000 rpm intervals. As the results according to the rotational speeds, the designed speed is 24,000 rpm where maximum efficiency exists. The maximum efficiency and output power are 88.66% and 8.52kW, respectively. Through this study, we expect that the analysed results will be used as the design material for the composition of the turbine optimal design parameters corresponding to the target output power under various working material conditions.

본 연구에서는 OTEC에 적용가능한 구심터빈을 대상으로 암모니아를 적용하여 8kW급 구심터빈의 설계 및 CFD 해석을 수행하였다. 구심터빈은 스크롤 케이싱, 18개의 베인노즐, 13개의 로터 블레이드로 구성된다. 질량유량과 입구온도는 0.5kg/s와 $25^{\circ}C$이며, 가변회전수 12,000~36,000 rpm 범위내에서 9가지 조건에 대해 해석을 수행하였다. 회전수 변화에 따른 해석결과, 설계회전수 24,000 rpm에서 최대효율점을 보였으며, 이때 최고효율은 88.66 %, 출력은 8.52kW이다. 향후, 팽창비가 1.4~1.5 정도의 범위를 갖도록 최적설계 과정을 통한 연구가 필요하다. 본 연구를 통해 분석된 해석결과는 다양한 작동유체 조건에서 목표출력에 해당하는 구심터빈의 최적 설계파라미터 구성을 위한 설계자료로 유용하게 활용될 것으로 기대한다.

Keywords

References

  1. Inha University, Performance an analysis and Optimization of OTEC Power Plant, Ministry of Science and Technology, 2000 (in Korean).
  2. Kee-Soo Han, Kwang-Ho, Kim, "Off - design performance analysis of radial inflow turbines with of without variable area guide vane." The korean society of mechanical engineers. vol 15. no. 6 , pp. 2171-2180. 1991.
  3. R. T. C. Harman, Gas Turbine Engineering, The MacMillan Press LTD, 1981
  4. R. K. Turton, Principles of Turbomachinery. E. and F. N. Spon LTD. 1984
  5. A. Simpson, S. W. T. Spence, D. W. Artt and G. McCullough, "Experimental and numerical investigation of varying stator design parameters for a radial turbine". Journal of America Science Mechanical Engineering Turbo Expo pp. 8-11, 2006.
  6. H. Maki and Y. Mori, "On the study of flow through an impeller of mixed and inward-flow radial turbines." Bulletin of The Japan Society of Mechanical Engineers , vol. 16, no. 91. pp.81-92. 1973. https://doi.org/10.1299/jsme1958.16.81
  7. A. Reichert and H. Simon, Numerical Investigations on The Optimum Design of Radial Inflow Turbine Guide Vanes. International Gas Turbine and Aeroengine Congress, ASME Paper:94-GT-61.
  8. Jang-Oh Mo, You-Taek Kim, Mann-Eung Kim, Cheol Oh, Jeong-Hwan Kim, Young-Ho Lee, "Performance analysis by CFD and aerodynamic design of 100kW class radial turbine using waste heat from ship." The Korean Society of Marine Engineering. vol. 25, no. 2, pp. 175-182, 2011. https://doi.org/10.5916/jkosme.2011.35.2.175
  9. Jang-Oh Mo, You-Taek Kim, Cheol Oh, Young-Ho Lee, "Influence of pwerformance and internal flow of a radial inflow turbine with variation of vane nozzle exit angles." The Korean Society of Marine Engineering. vol. 35, no. 6, pp. 757-764, 2011. https://doi.org/10.5916/jkosme.2011.35.6.757
  10. Kyoung-Hoon Kim, "Study of working fluids on thermodynamic performanceof organic rankine cycle (ORC)." Trans. of the Korean Hydrogen and New Energy Society. vol. 22, no. 2, pp. 223-231, 2011.
  11. A. S. Dave, Jong-Min Lee, Young-Goo Yeo, Sang-Choel Lee, Sung-Young Moon, Process Design using the HYSYS. 2008., Korea
  12. ANSYS FLUENT Theory Guide.
  13. C. A. M Venture, P. A. Jacobs, A. S. Rowlands, P. Petrie-Repar and E. Sauret, "Preliminary design and performance estimation of radiaul inflow turbines." An Automated Approach, Journal of Fluids Engineering. vol. 134, pp. 031102.01-13, 2012.

Cited by

  1. An analysis on the characteristics of superheater organization of ORC system for marine waste heat recovery system(WHRS) vol.38, pp.1, 2014, https://doi.org/10.5916/jkosme.2014.38.1.8
  2. The development of a preliminary designing program for ORC radial inflow turbines and the design of the radial inflow turbine for the OTEC vol.38, pp.3, 2014, https://doi.org/10.5916/jkosme.2014.38.3.276