DOI QR코드

DOI QR Code

Computational Study on The Effect of Injection Nozzle Hole Exit Angle Variation on Injection Characteristics

분사노즐 출구 각도 변화가 분사특성에 미치는 영향에 관한 계산적 고찰

  • 김주연 (한국해양대학교 대학원 기계공학과) ;
  • 박권하 (한국해양대학교 기계에너지시스템공학부) ;
  • 이승호 ((주)신원 미크론)
  • Received : 2012.07.27
  • Accepted : 2012.10.29
  • Published : 2012.11.30

Abstract

Emission regulations have been strengthened step by step for marine engines. A noble measure is required both inside and outside of the combustion chamber. The combustion characteristics in cylinder have a very close relationship with the exhaust emission characteristics. Injection valve and nozzle hole geometry is an important factor for combustion. The study to improve the spray characteristics has concentrated on nozzle inlet geometry and nozzle hole diameter, but the exit geometry has not considered. In this study the nozzle exit angle variation was tested. The results show that the angle between $30^{\circ}$ and $60^{\circ}$ is more effective than the other cases.

박용기관에서의 배기규제는 단계별로 강화되고 있으며 연소실 내외의 종합대책이 요구되고 있다. 기관 내부의 연소 특성은 배기배출 특성과 밀접한 관계가 있으며 분사밸브의 노즐과 노즐 홀 특성은 연소에 중요한 영향을 미친다. 분무 특성을 향상시키기 위한 노즐에 관한 연구는 입구형상, 직경 등에 집중되고 있으며, 노즐 출구의 형상에 대해서는 연구가 부족하다. 본 연구에서는 노즐 출구의 형상을 0도에서 90도까지 변화시키면서 계산을 수행하였다. 분사 압력, 질량유량, 유속, 유동특성 등을 종합하였을 때 노즐 출구 각도를 30도와 60도 사이로 하였을 때가 가장 효과적일 것이라 사료된다.

Keywords

References

  1. W.-H. Yoon, B.-S. Kim, and S.-H, Ryu, et al, "Effect of fuel nozzle configuration on the reduction of NOx emission in medium-speed marine diesel engine", Conference of the Korean Society of Marine Engineering, Nov. 01, pp. 13-14, 2005 (in Korean).
  2. D.-G. Kim, M.-K. Kim, and S.-H. Yoon, "The flow characteristics with variation of nozzle-to-nozzle angles on unventilated dual jests", Jounal of the Korean Society of Marine Engineering, vol. 32, no. 8, pp. 1231-1239, 2008 (in Korean). https://doi.org/10.5916/jkosme.2008.32.8.1231
  3. K.-S. Cha, W.-I. Chung, and C.-G. Park, "A study on spray behaviors with variation of nozzle diameter in the diesel combustion chamber", Transactions of Korean Society of Automotive Engineers, vol. 8, no. 3, pp. 18-27, 2000 (in Korean).
  4. F.J. Salvador, J.V. Romero, M.D. Rosello, and J. Martinez-Lopez, "Validation of a code for modeling cavitation phenomena in diesel injector nozzle", Elsevier Mathmatical and computer Modeling, vol. 52, no. 52, pp. 1123-1132, 2010. https://doi.org/10.1016/j.mcm.2010.02.027
  5. F.J. Salvador, J.V. Romero, and M.D. Rosello, "Influence of biofuels on the internal flow in diesel injector nozzles", Elsevier Mathmatical and computer Modeling vol. 54, no. 54, pp. 1699-1705, 2011. https://doi.org/10.1016/j.mcm.2010.12.010
  6. Sibendu Som, Anita I. Ramirez, Douglas E. Longman, and Suresh K. Aggarwal, "Effect of nozzle orifice geometry on spray combustion, and emission characteristics under diesel engine conditions", Elsevier Fuel vol. 90, no. 90, pp. 1267-1276, 2011. https://doi.org/10.1016/j.fuel.2010.10.048
  7. C. Acroumanis, M. Gavaises, J. M. Nouri, E. Wahab and R. Horrocks, "Analysis of the flow in the nozzle of a vertical Multi-Hole diesel engine injector", SAE paper 980811, 1998.
  8. W.-J. Chung, S.-H. Oh, and C.-H. Son, "Numerical analysis of the flow field of circular nozzle exit region", Journal of Fluid Machinery, vol. 13, no. 6, pp. 13-18, 2010 (in Korean). https://doi.org/10.5293/KFMA.2010.13.6.013
  9. B.-H. Kim, K.-H. Ryu, and E.-I. Jung, et al, "Flow and performance analysis of atomizing nozzle", Journal of the Korean Society of Manufacturing Process Engineers, vol. 9, no. 3, pp. 42-48, 2010 (in Korean).
  10. J.-K. Kim, J.-H. Lee, and H.-B. Chang, "Computational investigation of pintle nozzle flow", Journal of the Korean Society of Propulsion Engineers, vol. 13, no. 2, pp. 35-41, 2009 (in Korean).
  11. Tommaso Lucchini, Gianluca D'Errico, Daniele Ettorre, "Numerical investigation of the spray-mesh-tubulence interactions for high-pressure, evaporating sprays at engine conditions". Elsivier International Journal of Heat and Fluid Flow, no. 32, pp. 285-297, 2011. https://doi.org/10.1016/j.ijheatfluidflow.2010.07.006