DOI QR코드

DOI QR Code

An Increased Intracellular Calcium Ion Concentration in Response to Dimethyl Sulfoxide Correlates with Enhanced Expression of Recombinant Human Cyclooxygenase 1 in Stably Transfected Drosophila melanogaster S2 Cells

Dimethyl sulfoxide에 의한 세포내 칼슘이온 농도 증가가 안정적으로 형질 전환된 초파리 S2 세포에서 재조합 사람 cyclooxygenase 1의 발현에 미치는 영향

  • Chang, Kyung Hwa (Department of Genetic Engineering and Graduate School of Biotechnology, Kyung Hee University) ;
  • Park, Jong-Hwa (Department of Genetic Engineering and Graduate School of Biotechnology, Kyung Hee University) ;
  • Kim, Do Hyung (Department of Genetic Engineering and Graduate School of Biotechnology, Kyung Hee University) ;
  • Chung, Ha Young (Department of Genetic Engineering and Graduate School of Biotechnology, Kyung Hee University) ;
  • HwangBo, Jeon (Department of Genetic Engineering and Graduate School of Biotechnology, Kyung Hee University) ;
  • Lee, Hyun Ho (Department of Genetic Engineering and Graduate School of Biotechnology, Kyung Hee University) ;
  • Lee, Hee-Young (Medican Co., Ltd.) ;
  • Shon, Dong-Hwa (Korea Food Research Institute) ;
  • Kim, Wonyong (Department of Microbiology & Research Institute for Translational System Biomics, Chung-Ang University College of Medicine) ;
  • Chung, In Sik (Department of Genetic Engineering and Graduate School of Biotechnology, Kyung Hee University)
  • Received : 2012.08.17
  • Accepted : 2012.10.10
  • Published : 2012.10.31

Abstract

Dimethyl sulfoxide (DMSO) increased the intracellular calcium ion concentration in stably transfected Drosophila melanogaster S2 cells expressing recombinant cyclooxygenase 1 (COX-1). DMSO did not increase the Drosophila NOS (dNOS) transcript level in calcium chelator-treated cells. Expression of recombinant COX-1 due to DMSO was diminished in cells treated with calcium chelators or channel blockers. Our results indicate that an increased intracellular calcium ion concentration due to DMSO is associated with up-regulation of the dNOS gene, leading to enhanced expression of COX-1.

Keywords

References

  1. Moraes, A. M., S. A. Jorge, R. M. Astray, C. A. Suazo, C. E. Calderón Riquelme, E. F. Augusto, A. Tonso, M. M. Pamboukian, R. A. Piccoli, M. F. Barral, and C. A. Pereira (2012) Drosophila melanogaster S2 cells for expression of heterologous genes: from gene cloning to bioprocess development. Biotechnol. Adv. 30: 613-628. https://doi.org/10.1016/j.biotechadv.2011.10.009
  2. Angelichio, M. L., J. A. Beck, H. Johansen, and M. Ivey-Hoyle (1991) Comparison of several promoters and polyadenylation signals for use in heterologous gene expression in cultured Drosophila cells. Nucleic Acids Res. 19: 5037-5043. https://doi.org/10.1093/nar/19.18.5037
  3. Maroni, G., E. Otto, and D. Lastowski-Perry (1986) Molecular and cytogenetic characterization of a metallothionein gene of Drosophila. Genetics 112: 493-504.
  4. Hamer, D. H. (1986) Metallothionein. Annu. Rev. Biochem. 55: 913-951. https://doi.org/10.1146/annurev.bi.55.070186.004405
  5. Palmiter, R. D. (1998) The elusive functions of metallothioneins. Proc. Natl. Acad. Sci. USA 95: 8428-8430. https://doi.org/10.1073/pnas.95.15.8428
  6. Otto, E., J. M. Allen, J. E. Young, R. D. Palmiter, and G. Maroni (1987) A DNA segment controlling metal-regulated expression of the Drosophila melanogaster metallothionein gene MTn. Mol. Cell Biol. 7: 1710-1715. https://doi.org/10.1128/MCB.7.5.1710
  7. Johansen, H., A. van der Straten, R. Sweet, E. Otto, G. Maroni, and M. Rosenberg (1989) Regulated expression at high copy number allows production of a growth inhibitory oncogene product in Drosophila schneider cells. Genes and Development 3: 882-889. https://doi.org/10.1101/gad.3.6.882
  8. Bunch, T. A., Y. Grinblat, and L. S. Goldstein (1988) Characterization and use of the Drosophila metallothionein promoter in cultured Drosophila melanogaster cells. Nucleic Acids Res. 16: 1043-1061. https://doi.org/10.1093/nar/16.3.1043
  9. Wahl, M. F., G. H. An, and J. M. Lee (1995) Effects of dimethylsulfoxide on heavy chain monoclonal antibody production from plant cell culture. Biotechnol. Lett. 17: 463-468. https://doi.org/10.1007/BF00132011
  10. Hanahan, D. (1983) Studies on transformation of Escherichia coli with plasmids. Mol. Biol. 166: 557-580. https://doi.org/10.1016/S0022-2836(83)80284-8
  11. Melkonyan, H., C. Sorg, and M. Klempt (1996) Electroporation efficiency in mammalian cells is increased by dimethyl sulfoxide (DMSO). Nucleic Acids Res. 24: 4356-4357. https://doi.org/10.1093/nar/24.21.4356
  12. Yenofsky, R., S. Cereghini, A. Krowczynska, and G. Brawerman (1983) Regulation of mRNA utilization in mouse erythroleukemia cells induced to differentiate by exposure to dimethyl sulfoxide. Mol. Cell Biol. 3: 1197-1203. https://doi.org/10.1128/MCB.3.7.1197
  13. Pollerberg, G. E., M. Schachner, and J. Davoust (1986) Differentiation state-dependent surface mobilities of two forms of the neural cell adhesion molecule. Nature 324: 462-465. https://doi.org/10.1038/324462a0
  14. Wang, W., X. Yi, and Y. Zhang (2007) Gene transcription acceleration: main cause of hepatitis B surface antigen production improvement by dimethylsulfoxide in the culture of Chinese hamster ovary cells. Biotechnol. Bioeng. 97: 526-535. https://doi.org/10.1002/bit.21262
  15. Sumida, K., Y. Igarashi, N. Toritsuka, T. Matsushita, K. Abe- Tomizawa, M. Aoki, T. Urushidani, H. Yamada, and Y. Ohno (2011) Effects of DMSO on gene expression in human and rat hepatocytes. Human Exp. Toxicol. 30: 1701-1709. https://doi.org/10.1177/0960327111399325
  16. Gouveia, R., S. Kandzia, H. S. Conradt, and J. Costa (2010) Production and N-glycosylation of recombinant human adhesion molecule L1 from insect cells using the stable expression system. Effect of dimethyl sulfoxide. J. Biotechnol. 145: 130-138. https://doi.org/10.1016/j.jbiotec.2009.10.018
  17. Park, J. H., K. H. Chang, Y. H. Lee, H. Y. Kim, J. M. Yang, and I. S. Chung (2002) Production of recombinant rotavirus capsid protein VP7 from stably transformed Drosophila melanogaster S2 cells. J. Microbial. Biotechnol. 12: 563-568.
  18. Chang, K. H., J. H. Park, Y. H. Lee, J. H. Kim, H. O. Chun, J. H. Kim, and I. S. Chung (2002) Dimethyl-sulfoxide and sodium butyrate enhance the production of recombinant cyclooxygenase 2 in stably transformed Drosophila melanogaster S2 cells. Biotechnol. Lett. 24: 1353-1359. https://doi.org/10.1023/A:1019841829667
  19. Chang, K. H., J. H. Park, H. Y. Chung, J. Hwang-Bo, H. H. Lee, D. H. Kim, Y. Soh, and I. S. Chung (2012) Enhanced expression of recombinant human cyclooxygenase 1 from stably-transfected Drosophila melanogaster S2 cells by dimethyl sulfoxide is mediated by up-regulation of nitric oxide synthase and transcription factor Kr-h1. Biotechnol. Lett. 34: 1243-1250. https://doi.org/10.1007/s10529-012-0911-x
  20. Regulski, M. and T. Tully (1995) Molecular and biochemical characterization of dNOS: Drosophila $Ca^{2+}$/calmodulin-dependent nitric oxide synthase. Proc. Natl. Acad. Sci. USA 92: 9072-9076. https://doi.org/10.1073/pnas.92.20.9072
  21. Morley, P. and J. F. Whitfield (1993) The differentiation inducer, dimethyl sulfoxide, transiently increases the intracellular calcium ion concentration in various cell types. J. Cell Physiol. 156: 219-225. https://doi.org/10.1002/jcp.1041560202
  22. Yamamoto, N. (1989) Effect of dimethyl sulfoxide on cytosolic ionized calcium concentration and cytoskeletal organization of hepatocytes in a primary culture. Cell Struct. Funct. 14: 75-85. https://doi.org/10.1247/csf.14.75
  23. Trubiani, O., C. Pieri, M. Rapino, and R. Di Primito (1999) The c-myc gene regulates the polyamine pathway in DMSOinduced apoptosis. Cell Prolif. 32: 119-129. https://doi.org/10.1046/j.1365-2184.1999.32230119.x
  24. Bading, H., G. E. Hardingham, C. M. Johnson, and S. Chawla (1997) Gene regulation by nuclear and cytoplasmic calcium signals. Biochem. Biophys. Res. Commun. 236: 541-543. https://doi.org/10.1006/bbrc.1997.7037
  25. Marletta, M. A. (1994) Nitric oxide synthase: aspects concerning structure and catalysis. Cell 78: 927-930. https://doi.org/10.1016/0092-8674(94)90268-2
  26. Nathan, C. and Q. Xie (1994) Nitric oxide synthases: roles, tolls, and controls. Cell 78: 915-918. https://doi.org/10.1016/0092-8674(94)90266-6
  27. Putney, J. W. (1990) Capacitive calcium entry revisited. Cell Calcium 11: 611-624. https://doi.org/10.1016/0143-4160(90)90016-N
  28. MacPherson, M. R., V. P. Pollock, K. E. Broderick, L. Kean, F. C. O'Connell, J. A. Dow, and S. A. Davies (2001) Model organisms: new insights into ion channel and transport function. L-type calcium channels regulate epithelial fluid transport in Drosophila melanogaster. Am. J. Physiol. Cell Physiol. 280: C394-407. https://doi.org/10.1152/ajpcell.2001.280.2.C394