DOI QR코드

DOI QR Code

The Use of Graphene for Regenerative Medicine

그래핀의 재생의학적 이용

  • Yoon, Jeong-Kee (School of Chemical and Biological Engineering, Seoul National University) ;
  • Kim, Byung-Soo (School of Chemical and Biological Engineering, Seoul National University)
  • 윤정기 (서울대학교 공과대학 화학생물공학부) ;
  • 김병수 (서울대학교 공과대학 화학생물공학부)
  • Received : 2012.10.06
  • Accepted : 2012.10.26
  • Published : 2012.10.31

Abstract

Graphene is a one-atom-thick sheet composed of carbon atoms only. It has a two-dimensional honeycomb structure with $sp^2$ orbital bonding, which presents some unique properties. Due to large Young's modulus, good electrical conductivity, ability to immobilize several kinds of small molecules and proteins, and biocompatibility of graphene, it has attracted interests inits ability to enhance cell growth and differentiation, followed by recent several studies. We reviewed about the osteogenic differentiation of mesenchymal stem cells, and neurogenic differentiation of neuron stem cells, and the ectodermal and mesodermal differentiation of induced pluripotent stem cells using graphene. Graphene has not only enhanced the adhesion and proliferation of mesenchymal stem cells, but also led to the faster differentiation even without any other exogenous signals. Nonetheless, graphene has some cytotoxicities in its amount-response manner, which is critical to regenerative medicine. The cytotoxicities of graphene were compared with those of grapheneoxide and carbon nanotubes.

Keywords

References

  1. Rao, C. N., A. K. Sood, K. S. Subrahmanyam, and A. Govindaraj (2009) Graphene: the new two-dimensional nanomaterial. Angew. Chem. Int. Ed. Engl. 48: 7752-7777. https://doi.org/10.1002/anie.200901678
  2. Lee, W. C., C. H. Lim, H. Shi, L. A. Tang, Y. Wang, C. T. Lim, and K. P. Loh (2011) Origin of enhanced stem cell growth and differentiation on graphene and graphene oxide. ACS Nano 5: 7334-7341. https://doi.org/10.1021/nn202190c
  3. Geim, A. K. and K. S. Novoselov (2007) The rise of graphene. Nat. Mater 6: 183-191. https://doi.org/10.1038/nmat1849
  4. Castro Neto, A. H., F. Guinea, N. M. R. Peres, K. S. Novoselov, and A. K. Geim (2009) The electronic properties of graphene. Reviews of Modern Physics 81: 109-162. https://doi.org/10.1103/RevModPhys.81.109
  5. Bolotin, K. I., K. J. Sikes, J. Hone, H. L. Stormer, and P. Kim (2008) Temperature-dependent transport in suspended graphene. Phys. Rev. Lett. 101: 096802. https://doi.org/10.1103/PhysRevLett.101.096802
  6. Wu, Z. S., W. Ren, L. Gao, J. Zhao, Z. Chen, B. Liu, D. Tang, B. Yu, C. Jiang, and H. M. Cheng (2009) Synthesis of graphene sheets with high electrical conductivity and good thermal stability by hydrogen arc discharge exfoliation. ACS Nano 3: 411-417. https://doi.org/10.1021/nn900020u
  7. Lee, C., X. Wei, J. W. Kysar, and J. Hone (2008) Measurement of the elastic properties and intrinsic strength of monolayer graphene. Science 321: 385-388. https://doi.org/10.1126/science.1157996
  8. Lee, Y., S. Bae, H. Jang, S. Jang, S. E. Zhu, S. H. Sim, Y. I. Song, B. H. Hong, and J. H. Ahn (2010) Wafer-scale synthesis and transfer of graphene films. Nano Lett. 10: 490-493. https://doi.org/10.1021/nl903272n
  9. Engler, A. J., S. Sen, H. L. Sweeney, and D. E. Discher (2006) Matrix elasticity directs stem cell lineage specification. Cell 126: 677-689. https://doi.org/10.1016/j.cell.2006.06.044
  10. Wheeler, S. E. (2012) Understanding substituent effects in noncovalent interactions involving aromatic rings. Acc. Chem. Res. DOI: 10.1021/ar300109n
  11. Utesch, T., G. Daminelli, and M. A. Mroginski (2011) Molecular dynamics simulations of the adsorption of bone morphogenetic protein-2 on surfaces withmedical relevance. Langmuir 27: 13144-13153. https://doi.org/10.1021/la202489w
  12. Mucksch, C. and H. M. Urbassek (2011) Adsorption of BMP-2 on a hydrophobic graphite surface: a molecular dynamics study. Chemical Physics Letters 510: 252-256. https://doi.org/10.1016/j.cplett.2011.05.036
  13. Xu, G., X. Chen, J. Hu, P. Yang, D. Yang, and L. Wei (2012) Immobilization of trypsin on graphene oxide for microwaveassisted on-plate proteolysis combined with MALDI-MS analysis. Analyst 137: 2757-2761. https://doi.org/10.1039/c2an35093a
  14. Lee da, Y., Z. Khatun, J. H. Lee, Y. K. Lee, and I. In (2011) Blood compatible graphene/heparin conjugate through noncovalent chemistry. Biomacromolecules 12: 336-341. https://doi.org/10.1021/bm101031a
  15. Raffaini, G. and F. Ganazzoli (2010) Protein adsorption on a hydrophobic surface: a molecular dynamics study of lysozyme on graphite. Langmuir 26: 5679-5689. https://doi.org/10.1021/la903769c
  16. Sheng, Y., W. Wang, and P. Chen (2010) Interaction of an ionic complementary peptide with a hydrophobic graphite surface. Protein Sci. 19: 1639-1648. https://doi.org/10.1002/pro.444
  17. Novoselov, K. S., A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov (2004) Electric field effect in atomically thin carbon films. Science 306: 666-669. https://doi.org/10.1126/science.1102896
  18. Berger, C., Z. Song, X. Li, X. Wu, N. Brown, C. Naud, D. Mayou, T. Li, J. Hass, A. N. Marchenkov, E. H. Conrad, P. N. First, and W. A. de Heer (2006) Electronic confinement and coherence in patterned epitaxial graphene. Science 312: 1191-1196. https://doi.org/10.1126/science.1125925
  19. Emtsev, K. V., A. Bostwick, K. Horn, J. Jobst, G. L. Kellogg, L. Ley, J. L. McChesney, T. Ohta, S. A. Reshanov, J. Rohrl, E. Rotenberg, A. K. Schmid, D. Waldmann, H. B. Weber, and T. Seyller (2009) Towards wafer-size graphene layers by atmospheric pressure graphitization of silicon carbide. Nat Mater 8: 203-207. https://doi.org/10.1038/nmat2382
  20. Sutter, P. W., J. I. Flege, and E. A. Sutter (2008) Epitaxial graphene on ruthenium. Nat Mater 7: 406-411. https://doi.org/10.1038/nmat2166
  21. Kim, K. S., Y. Zhao, H. Jang, S. Y. Lee, J. M. Kim, J. H. Ahn, P. Kim, J. Y. Choi, and B. H. Hong (2009) Large-scale pattern growth of graphene films for stretchable transparent electrodes. Nature 457: 706-710. https://doi.org/10.1038/nature07719
  22. Reina, A., X. Jia, J. Ho, D. Nezich, H. Son, V. Bulovic, M. S. Dresselhaus, and J. Kong (2009) Large area, few-layer graphene films on arbitrary substrates by chemical vapor deposition. Nano Lett. 9: 30-35. https://doi.org/10.1021/nl801827v
  23. Coraux, J., A. T. N'Diaye, C. Busse, and T. Michely (2008) Structural coherency of graphene on Ir (111). Nano Lett. 8: 565-570. https://doi.org/10.1021/nl0728874
  24. Yu, Q., J. Lian, S. Siriponglert, H. Li, Y. P. Chen, and S.-S. Pei (2008) Graphene segregated on Ni surfaces and transferred to insulators. Applied Physics Letters 93: 113103. https://doi.org/10.1063/1.2982585
  25. Li, X., W. Cai, J. An, S. Kim, J. Nah, D. Yang, R. Piner, A. Velamakanni, I. Jung, E. Tutuc, S. K. Banerjee, L. Colombo, and R. S. Ruoff (2009) Large-area synthesis of high-quality and uniform graphene films on copper foils. Science 324: 1312-4. https://doi.org/10.1126/science.1171245
  26. Ferrari, A. C., J. C. Meyer, V. Scardaci, C. Casiraghi, M. Lazzeri, F. Mauri, S. Piscanec, D. Jiang, K. S. Novoselov, S. Roth, and A. K. Geim (2006) Raman spectrum of graphene and graphene layers. Phys. Rev. Lett. 97: 187401. https://doi.org/10.1103/PhysRevLett.97.187401
  27. Graf, D., F. Molitor, K. Ensslin, C. Stampfer, A. Jungen, C. Hierold, and L. Wirtz (2007) Spatially resolved Raman spectroscopy of single- and few-layer graphene. Nano Lett. 7: 238-242. https://doi.org/10.1021/nl061702a
  28. Discher, D. E., D. J. Mooney, and P. W. Zandstra (2009) Growth factors, matrices, and forces combine and control stem cells. Science 324: 1673-1677. https://doi.org/10.1126/science.1171643
  29. Haque, M. A., M. Nagaoka, B. Hexig, and T. Akaike (2010) Artificial extracellular matrix for embryonic stem cell cultures: a new frontier of nanobiomaterials. Science and Technology of Advanced Materials 11: 014106. https://doi.org/10.1088/1468-6996/11/1/014106
  30. Rezek, B., L. Michalikova, E. Ukraintsev, A. Kromka, and M. Kalbacova (2009) Micro-pattern guided adhesion of osteoblasts on diamond surfaces. Sensors (Basel) 9: 3549-3562. https://doi.org/10.3390/s90503549
  31. Kalbacova, M., B. Rezek, V. Baresova, C. Wolf-Brandstetter, and A. Kromka (2009) Nanoscale topography of nanocrystalline diamonds promotes differentiation of osteoblasts. Acta Biomater. 5: 3076-3085. https://doi.org/10.1016/j.actbio.2009.04.020
  32. Kalbacova, M., A. Broz, O. Babchenko, and A. Kromka (2009) Study on cellular adhesion of human osteoblasts on nano-structured diamond films. Physica Status Solidi (b) 246: 2774-2777. https://doi.org/10.1002/pssb.200982253
  33. Kalbacova, M., A. Broz, J. Kong, and M. Kalbac (2010) Graphene substrates promote adherence of human osteoblasts and mesenchymal stromal cells. Carbon 48: 4323-4329. https://doi.org/10.1016/j.carbon.2010.07.045
  34. Nayak, T. R., H. Andersen, V. S. Makam, C. Khaw, S. Bae, X. Xu, P. L. Ee, J. H. Ahn, B. H. Hong, G. Pastorin, and B. Ozyilmaz (2011) Graphene for controlled and accelerated osteogenic differentiation of human mesenchymal stem cells. ACS Nano 5: 4670-4678. https://doi.org/10.1021/nn200500h
  35. Fahmi, H., J. P. Pelletier, F. Mineau, and J. Martel-Pelletier (2002) 15d-PGJ2 is acting as a 'dual agent'on the regulation of COX-2 expression in human osteoarthritic chondrocytes. Osteoarthritis and Cartilage 10: 845-848. https://doi.org/10.1053/joca.2002.0835
  36. Lundin, V., A. Herland, M. Berggren, E. W. Jager, and A. I. Teixeira (2011) Control of neural stem cell survival by electroactive polymer substrates. PLoS One 6: e18624. https://doi.org/10.1371/journal.pone.0018624
  37. Park, S. Y., J. Park, S. H. Sim, M. G. Sung, K. S. Kim, B. H. Hong, and S. Hong (2011) Enhanced differentiation of human neural stem cells into neurons on graphene. Adv. Mater 23: H263-267. https://doi.org/10.1002/adma.201101503
  38. Song, H., C. F. Stevens, and F. H. Gage (2002) Astroglia induce neurogenesis from adult neural stem cells. Nature 417: 39-44. https://doi.org/10.1038/417039a
  39. Okita, K., T. Ichisaka, and S. Yamanaka (2007) Generation of germline-competent induced pluripotent stem cells. Nature 448: 313-317. https://doi.org/10.1038/nature05934
  40. Yu, J., M. A. Vodyanik, K. Smuga-Otto, J. Antosiewicz-Bourget, J. L. Frane, S. Tian, J. Nie, G. A. Jonsdottir, V. Ruotti, R. Stewart, Slukvin, II, and J. A. Thomson (2007) Induced pluripotent stem cell lines derived from human somatic cells. Science 318: 1917-1920. https://doi.org/10.1126/science.1151526
  41. Chen, G. Y., D. W. Pang, S. M. Hwang, H. Y. Tuan, and Y. C. Hu (2012) A graphene-based platform for induced pluripotent stem cells culture and differentiation. Biomaterials 33: 418-427. https://doi.org/10.1016/j.biomaterials.2011.09.071
  42. Nel, A., T. Xia, L. Mädler, and N. Li (2006) Toxic potential of materials at the nanolevel. Science 311: 622-627. https://doi.org/10.1126/science.1114397
  43. Shi, L., B. Hernandez, and M. Selke (2006) Singlet oxygen generation from water-soluble quantum dot-organic dye nanocomposites. J. Am. Chem. Soc. 128: 6278-6279. https://doi.org/10.1021/ja057959c
  44. Akhavan, O. and E. Ghaderi (2010) Toxicity of graphene and graphene oxide nanowalls against bacteria. ACS Nano 4: 5731-5736. https://doi.org/10.1021/nn101390x
  45. Ryoo, S. R., Y. K. Kim, M. H. Kim, and D. H. Min (2010) Behaviors of NIH-3T3 fibroblasts on graphene/carbon nanotubes: proliferation, focal adhesion, and gene transfection studies. ACS Nano 4: 6587-6598. https://doi.org/10.1021/nn1018279
  46. Zhang, Y., S. F. Ali, E. Dervishi, Y. Xu, Z. Li, D. Casciano, and A. S. Biris (2010) Cytotoxicity effects of graphene and single-wall carbon nanotubes in neural phaeochromocytoma-derived PC12 cells. ACS Nano 4: 3181-3186. https://doi.org/10.1021/nn1007176
  47. Rivera Gil, P., G. Oberdorster, A. Elder, V. Puntes, and W. J. Parak (2010) Correlating physico-chemical with toxicological properties of nanoparticles: the present and the future. ACS Nano 4: 5527-5531. https://doi.org/10.1021/nn1025687
  48. Maurer-Jones, M. A., Y. S. Lin, and C. L. Haynes (2010) Functional assessment of metal oxide nanoparticle toxicity in immune cells. ACS Nano 4: 3363-3373. https://doi.org/10.1021/nn9018834
  49. Nativo, P., I. A. Prior, and M. Brust (2008) Uptake and intracellular fate of surface-modified gold nanoparticles. ACS Nano 2: 1639-1644. https://doi.org/10.1021/nn800330a
  50. Hess, H. and Y. Tseng (2007) Active intracellular transport of nanoparticles: opportunity or threat? ACS Nano 1: 390-392. https://doi.org/10.1021/nn700407v
  51. Orr, G., D. J. Panther, J. L. Phillips, B. J. Tarasevich, A. Dohnalkova, D. Hu, J. G. Teeguarden, and J. G. Pounds (2007) Submicrometer and nanoscale inorganic particles exploit the actin machinery to be propelled along microvilli-like structures into alveolar cells. ACS Nano 1: 463-475. https://doi.org/10.1021/nn700149r
  52. Porter, A. E., M. Gass, J. S. Bendall, K. Muller, A. Goode, J. N. Skepper, P. A. Midgley, and M. Welland (2009) Uptake of noncytotoxic acid-treated single-walled carbon nanotubes into the cytoplasm of human macrophage cells. ACS Nano 3: 1485-1492. https://doi.org/10.1021/nn900416z
  53. Chang, E., N. Thekkek, W. W. Yu, V. L. Colvin, and R. Drezek (2006) Evaluation of quantum dot cytotoxicity based on intracellular uptake. Small 2: 1412-1417. https://doi.org/10.1002/smll.200600218
  54. Thubagere, A. and B. M. Reinhard (2010) Nanoparticle-induced apoptosis propagates through hydrogen-peroxide-mediated bystander killing: insights from a human intestinal epithelium in vitro model. ACS Nano 4: 3611-3622. https://doi.org/10.1021/nn100389a
  55. Casals, E., S. Vázquez-Campos, N. G. Bastús, and V. Puntes (2008) Distribution and potential toxicity of engineered inorganic nanoparticles and carbon nanostructures in biological systems. TrAC Trends in Analytical Chemistry 27: 672-683. https://doi.org/10.1016/j.trac.2008.06.004
  56. Colvin, V. L. (2003) The potential environmental impact of engineered nanomaterials. Nat. Biotechnol. 21: 1166-1170. https://doi.org/10.1038/nbt875
  57. Tian, F., D. Cui, H. Schwarz, G. G. Estrada, and H. Kobayashi (2006) Cytotoxicity of single-wall carbon nanotubes on human fibroblasts. Toxicol In Vitro 20: 1202-1212. https://doi.org/10.1016/j.tiv.2006.03.008
  58. Murr, L. E., K. M. Garza, K. F. Soto, A. Carrasco, T. G. Powell, D. A. Ramirez, P. A. Guerrero, D. A. Lopez, and J. Venzor, 3rd (2005) Cytotoxicity assessment of some carbon nanotubes and related carbon nanoparticle aggregates and the implications for anthropogenic carbon nanotube aggregates in the environment. Int. J. Environ Res. Public Health 2: 31-42. https://doi.org/10.3390/ijerph2005010031
  59. Dong, L., K. L. Joseph, C. M. Witkowski, and M. M. Craig (2008) Cytotoxicity of single-walled carbon nanotubes suspended in various surfactants. Nanotechnology 19: 255702. https://doi.org/10.1088/0957-4484/19/25/255702
  60. Smart, S. K., A. I. Cassady, G. Q. Lu, and D. J. Martin (2006) The biocompatibility of carbon nanotubes. Carbon 44: 1034-1047. https://doi.org/10.1016/j.carbon.2005.10.011
  61. Garza, K. M., K. F. Soto, and L. E. Murr (2008) Cytotoxicity and reactive oxygen species generation from aggregated carbon and carbonaceous nanoparticulate materials. Int. J. Nanomedicine 3: 83-94. https://doi.org/10.2217/17435889.3.1.83
  62. Belyanskaya, L., S. Weigel, C. Hirsch, U. Tobler, H. F. Krug, and P. Wick (2009) Effects of carbon nanotubes on primary neurons and glial cells. Neurotoxicology 30: 702-711. https://doi.org/10.1016/j.neuro.2009.05.005
  63. Sharma, H. S., S. F. Ali, Z. R. Tian, R. Patnaik, S. Patnaik, A. Sharma, A. Boman, P. Lek, E. Seifert, and T. Lundstedt (2010) Nanowired-drug delivery enhances neuroprotective efficacy of compounds and reduces spinal cord edema formation and improves functional outcome following spinal cord injury in the rat. Acta Neurochir Suppl. 106: 343-350. https://doi.org/10.1007/978-3-211-98811-4_63
  64. Liao, K. H., Y. S. Lin, C. W. Macosko, and C. L. Haynes (2011) Cytotoxicity of graphene oxide and graphene in human erythrocytes and skin fibroblasts. ACS Appl. Mater Interfaces 3: 2607-2615. https://doi.org/10.1021/am200428v
  65. Arvizo, R. R., O. R. Miranda, M. A. Thompson, C. M. Pabelick, R. Bhattacharya, J. D. Robertson, V. M. Rotello, Y. S. Prakash, and P. Mukherjee (2010) Effect of nanoparticle surface charge at the plasma membrane and beyond. Nano Lett. 10: 2543-2548. https://doi.org/10.1021/nl101140t
  66. Liu, S., L. Wei, L. Hao, N. Fang, M. W. Chang, R. Xu, Y. Yang, and Y. Chen (2009) Sharper and faster "nano darts" kill more bacteria: a study of antibacterial activity of individually dispersed pristine single-walled carbon nanotube. ACS Nano 3: 3891-3902. https://doi.org/10.1021/nn901252r
  67. Monteiro-Riviere, N. A. and A. O. Inman (2006) Challenges for assessing carbon nanomaterial toxicity to the skin. Carbon 44: 1070-1078. https://doi.org/10.1016/j.carbon.2005.11.004
  68. Worle-Knirsch, J. M., K. Pulskamp, and H. F. Krug (2006) Oops they did it again! carbon nanotubes hoax scientists in viability assays. Nano Lett. 6: 1261-1268. https://doi.org/10.1021/nl060177c