DOI QR코드

DOI QR Code

Comparison of Development times of Myzus persicae (Hemiptera:Aphididae) between the Constant and Variable Temperatures and its Temperature-dependent Development Models

항온과 변온조건에서 복숭아혹진딧물의 발육비교 및 온도 발육모형

  • Kim, Do-Ik (Jeollanamdo Agricultural Research & Extension Services) ;
  • Choi, Duck-Soo (Jeollanamdo Agricultural Research & Extension Services) ;
  • Ko, Suk-Ju (Jeollanamdo Agricultural Research & Extension Services) ;
  • Kang, Beom-Ryong (Jeollanamdo Agricultural Research & Extension Services) ;
  • Park, Chang-Gyu (Crop Protection Division, Department of Agricultural biology, National Academy of Agricultural Science) ;
  • Kim, Seon-Gon (Jeollanamdo Agricultural Research & Extension Services) ;
  • Park, Jong-Dae (Jeollanamdo Agricultural Research & Extension Services) ;
  • Kim, Sang-Soo (Division of Horticulture and Plant Medicine, Sunchon National University)
  • 김도익 (전남농업기술원 연구개발국) ;
  • 최덕수 (전남농업기술원 연구개발국) ;
  • 고숙주 (전남농업기술원 연구개발국) ;
  • 강범용 (전남농업기술원 연구개발국) ;
  • 박창규 (국립농업과학원 농업생물부) ;
  • 김선곤 (전남농업기술원 연구개발국) ;
  • 박종대 (전남농업기술원 연구개발국) ;
  • 김상수 (순천대학교 원예생물의학부)
  • Received : 2012.04.19
  • Accepted : 2012.11.13
  • Published : 2012.12.01

Abstract

The developmental time of the nymphs of Myzus persicae was studied in the laboratory (six constant temperatures from 15 to $30^{\circ}C$ with 50~60% RH, and a photoperiod of 14L:10D) and in a green-pepper plastic house. Mortality of M. persicae in laboratory was high in the first(6.7~13.3%) and second instar nymphs(6.7%) at low temperatures and high in the third (17.8%) and fourth instar nymphs(17.8%) at high temperatures. Mortality was 66.7% at $33^{\circ}C$ in laboratory and $26.7^{\circ}C$ in plastic house. The total developmental time was the longest at $14.6^{\circ}C$ (14.4 days) and shortest at $26.7^{\circ}C$ (6.0 days) in plastic house. The lower threshold temperature of the total nymphal stage was $3.0^{\circ}C$ in laboratory. The thermal constant required for nymphal stage was 111.1DD. The relationship between developmental rate and temperature was fitted nonlinear model by Logan-6 which has the lowest value on Akaike information criterion (AIC) and Bayesian information criterion (BIC). The distribution of completion of each developmental stage was well described by the 3-parameter Weibull function ($r^2=0.95{\sim}0.97$). This model accurately described the predicted and observed occurrences. Thus the model is considered to be good for use in predicting the optimal spray time for Myzus persicae.

복숭아혹진딧물(Myzus persicae)의 온도에 따른 발육시험을 실내 15, 18, 21, 24, 27, $30^{\circ}C$의 6개 항온, 광주기 14L:10D, 상대습도 50~60% 조건과 고추 비닐하우스에서 3월 23일부터 8월 20일까지 6회 접종하여 수행하였다. 실내사망률은 저온에서는 1~2령충의 사망률이 높았고 온도가 증가할수록 3~4령충의 사망률이 높았으며 고온에서는 66.7%까지 높아졌다. 실내와 포장조건 모두 온도가 증가할수록 발육기간이 짧아지는 경향을 보였으며 포장조건 8월 접종에서 6.03일로 가장 짧았다. 온도와 발육률과의 관계를 보기 위해 선형 및 3개의 비선형 모형(Briere 1, Lactin 2, Logan 6)을 이용하여 분석한 결과, 선형모형을 이용하여 전체약충의 발육영점온도는 $3.0^{\circ}C$였으며 발육유효적산온도는 111.1DD 였다. 3가지 비선형 모형중 Logan-6 모형이 전약충, 후약충 전체약충 단계에서 AIC와 BIC 값이 가장 적어 온도와 발육율과의 관계를 잘 설명하였으며, 발육단계별 발육완료분포는 3-parameter Weibull 함수를 사용하였으며 전약충, 후약충, 전체약충에서 $r^2$ 값이 0.95~0.97로 높은 값을 보여 양호한 모형 적합성을 보였으며 정식시기별 성충 발생 예측치와 포장 조사치가 일치하여 방제적기 추정에 유용하게 사용할 수 있을 것이다.

Keywords

References

  1. Ali Niazee, M.T., 1976. Thermal unit requirements for determining adult emergence of the western cherry fruit fly in the Willamatte Valley of oregon. Environ. Entomol. 5, 397-401. https://doi.org/10.1093/ee/5.3.397
  2. Barlow, C.A., 1962. The influence of temperature on the growth of experimental populations of Myzus persicae (Sulzer) and Macrosiphum euphorbiae (Thomas) (Aphididae). Can. J. Zool. 40, 145-156. https://doi.org/10.1139/z62-019
  3. Briere, J.F., Pracros, P., 1998. Comparison of temperature-dependent growth models with the development of Lobesia botrana (Lepidoptera : Tortricidae). Environ. Entomol. 27, 94-101. https://doi.org/10.1093/ee/27.1.94
  4. Briere, J.F., Pracros, P., Le Roux, A.Y., Pierre, J.S., 1999. A novel rate model of temperature-dependent development for arthropods. Environ. Entomol. 28, 22-29. https://doi.org/10.1093/ee/28.1.22
  5. Burnham, K.P., Anderson, D.R., 2004. Multimodel inference : understanding AIC and BIC in model selection. Sociol. Methods Res. 33, 261-304. https://doi.org/10.1177/0049124104268644
  6. Butts, RA., McEwen, F.L., 1981. Seasonal populations of the diamondback moth, Plutella xylostella (Lepidoptera: Plutellidae), in relation to day-degree accumulation. Can. Entomol. 113, 127-131. https://doi.org/10.4039/Ent113127-2
  7. Campbell, A., Frazer, B.D., Gilbert, N., Gutierrez, A.P., Markauer, M., 1974. Temperature requirements of some aphids and their parasites. J. Appl. Ecol. 11, 431-438. https://doi.org/10.2307/2402197
  8. Capinera, J.L., 2000. www. Creatures. Ifas.ufl.edu/veg/aphid/melon aphid. htm.
  9. Choi, J.S., Hwang, C.Y., Goh, H.G., Kim, I.S., Lee, S.G., 1996. Insect pests fauna and their spatial distribution pattern on Kale (Brassica olerecea L. var. Acephala DC). Korean J. Appl. Entomol. 38, 489-494.
  10. Chon, T.S., Hyun, J.S., Park, C.S., 1975. A study on the population dynamics of overwintered small brown plat hopper, Laodelphax striatellus (Fallen). Kor. J. Entomol. 5, 21-23.
  11. Eckenrode, C.K., Chapman, R.K., 1972. Seasonal adult cabbage maggot populations in the field in relation to thermal unit accumulations. Annals of the Entomological Society of America 65, 151-156. https://doi.org/10.1093/aesa/65.1.151
  12. Han, M.W., Lee, J.H., Lee, M.H., 1993. Effects of temperature on development of oriental tobacco budworm, Helioverpa assulta Guenee. Kor. J. Appl. Entomol. 32, 236-244.
  13. Howe, R.W., 1967. Temperature effects on embryonic development in insects. Annu. Rev. Entomol. 10, 15-42.
  14. Kennedy, J.S., Day, M.F., Eastop, V.F., 1962. A conspectus of aphids as vectors of plant viruses. Commonwealth Institute of Entomology, London. pp. 114.
  15. Kim, D.S., Lee, J.H., 2003. Oviposition model of Carposina sasakii (Lepidoptera : Carposinidae). Ecol. model. 162, 145-153. https://doi.org/10.1016/S0304-3800(02)00402-7
  16. Kim, D.S., Lee, J.H., Yiem, M.S., 2001. Temperature-dependent development of Carposina sasakii (Lepidoptera : Carposinidae) and its emergence models. Environ. Entomol. 30, 298-305. https://doi.org/10.1603/0046-225X-30.2.298
  17. Kim, J.S., Kim, T.H., 2004. Development time and development model of green peach aphid, Myzus persicae. Kor. J. Appl. Entomol. 43, 305-310.
  18. Kim, J.S., Kim, Y.H., Kim, T.H., Kim, J.H., Byeon, Y.W., Kim, K.H., 2004. Temperature-dependent development and its model of the melon aphid, Aphis gossypii Glover (Homoptera: Aphididae). Kor. J. Appl. Entomol. 43, 111-116.
  19. King, E.G., Phillips, J.R., 1989. The 42nd annual conference report on cotton insect research and control. in: Proc. Beltwide Cotton Production Research Conference, Memphis, Tennessee, USA. pp. 180-191.
  20. Kocourek, F., Beraniova, J., 1989. Temperature requirements for development and popultion growth of the green peach aphid Myzus persicae on sugar beet. Acta Entomol. Bohemoslor. 86, 349-355.
  21. Lactin, D.J., Holliday, N.J., Johnson, D.I., Craigen, R., 1995. Improved rate model of temperature-dependent development by arthropods. Environ. Entomol. 24, 68-75. https://doi.org/10.1093/ee/24.1.68
  22. Lee, Y.H., 2010. Simulation study on model selection based on AIC under unbalanced design in linear mixed effect models. Kor. J. A. Stat. 23, 1169-1178. https://doi.org/10.5351/KJAS.2010.23.6.1169
  23. Liu, S.S., Meng, X.D., 1999. Modelling development time of Myzus persicae (Homoptera: Aphididae) at constant and natural temperatures. Bull. Entomol. Res. 89, 53-63.
  24. Logan, J.A., Wolkind, D.J., Hoyt, S.C., Tanigoshi, L.K., 1976. An analytical model for description of temperature dependent rate phenomena in arthropods. Environ. Entomol. 5, 1133-1140. https://doi.org/10.1093/ee/5.6.1133
  25. Lykouressis, D.R., 1985. Temperature requirements of Sitobion avenae (F.) necessary for ecological studies, by assessing methods for the estimation of instar duration. Z. Ang. Entomol. 100, 479-493.
  26. MacGillivary, M.E., Anderson, G.B., 1958. Development of four species of aphids (Homoptera) on potato. Can. Entomol. 90, 148-155. https://doi.org/10.4039/Ent90148-3
  27. Park C.G., Park, H.H., Uhm, K.B., Lee, J.H., 2010a. Temperature -dependent development model of Paromius exiguus (Distant) (Heteroptera: Lygaeidae). Kor. J. Appl. Entomol. 49, 305-312. https://doi.org/10.5656/KSAE.2010.49.4.305
  28. Park C.G., Park, H.H., Kim, K.H., 2011. Temperature-dependent development model and forecasting of adult emergence of overwintered small brown planthopper, Laodelphax striatellus Fallen, population. Kor. J. Appl. Entomol. 50, 343-352. https://doi.org/10.5656/KSAE.2011.50.4.343
  29. Park, C.G., Kim, H.Y., Lee, J.H., 2010b. Parameter estimation for a temperature-dependent development model of Thrips palmi Karny (Thysanoptera: Thripidae). J. Asia Pac. Entomol. 13, 145-149. https://doi.org/10.1016/j.aspen.2010.01.005
  30. Petitt, F.L., Smilowitz, Z., 1982. Green peach aphid feeding damage to potato in various plant growth stages. J. Econ. Entomol. 75, 431-435. https://doi.org/10.1093/jee/75.3.431
  31. Raftery, A.E., 1995. Bayesian model selection in social research. Sociol. methodol. 25, 111-163. https://doi.org/10.2307/271063
  32. Schoolfield, R.M., Sharpe, P.J.H., Mugnuson, C.E., 1981. Nonlinear regression of biological temperature-dependent rate models based on absolute reaction-rate theory. J. Theor. Biol. 66, 21-38.
  33. Scopes, N.E.A., Biggerstaff, S.B., 1977. The use of a temperature integrator predict the developmental period of the parasite Aphidius matricariae. J. Appl. Ecol. 14, 799-802. https://doi.org/10.2307/2402811
  34. Shi, P., Ge, F., 2010. A comparison of different thermal performance functions describing temperature-dependent development rates. J. Thermal Biol. 35, 225-231. https://doi.org/10.1016/j.jtherbio.2010.05.005
  35. Slosser, J.E., Pinchak, W.E., Rummel, D.E., 1989. A review on known and potential factors affecting the population dynamics of the cotton aphid. Southwestern Entomologist 14, 302-313.
  36. SYSTAT software inc. 2002. TableCurve 2D Automated curve fitting analysis: Ver. 5.01. Systat software. inc. San jose. CA.
  37. Wagner, T.L., Wu, H. Sharpe, P.J.H., Coulson, R.N., 1984a. Modeling distribution of insect development time: A literature review and application of Weibull function. Ann. Entomol. Soc. Am. 77, 475-487. https://doi.org/10.1093/aesa/77.5.475
  38. Wagner, T.L., Wu, H., Sharpe, P.J.H., Schoolfield, R.M., Coulson, R.N., 1984b. Modeling insect development rate: A literature review and application of a biophysical model. Ann. Entomol. Soc. Am. 77, 208-225. https://doi.org/10.1093/aesa/77.2.208
  39. Whalon, M.E., Smilowitz, Z., 1979. Temperature-dependent model for predicting field populations of green peach aphid Myzus persicae (Homoptera: Aphididae). Can. Entomol. 111, 1025-1032. https://doi.org/10.4039/Ent1111025-9

Cited by

  1. Research Status and Future Subjects to Predict Pest Occurrences in Agricultural Ecosystems Under Climate Change vol.16, pp.4, 2014, https://doi.org/10.5532/KJAFM.2014.16.4.368
  2. Temperature-dependent Development Model of Larvae of Mealworm beetle, Tenebrio molitor L. (Coleoptera: Tenebrionidae) vol.52, pp.4, 2013, https://doi.org/10.5656/KSAE.2013.11.0.066
  3. Life Table Analysis of the Cabbage Aphide, Brevicoryne brassicae (Linnaeus) (Homoptera: Aphididae), on Tah Tsai Chinese Cabbages vol.53, pp.4, 2014, https://doi.org/10.5656/KSAE.2014.11.0.058