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COMMON FIXED POINT THEOREM AND INVARIANT

APPROXIMATION IN COMPLETE LINEAR

METRIC SPACES

Hemant Kumar Nashine

Abstract. A common fixed point result of Gregus type for subcompati-

ble mappings defined on a complete linear metric space is obtained. The
considered underlying space is generalized from Banach space to complete

linear metric spaces, which include Banach space and complete metriz-

able locally convex spaces. Invariant approximation results have also been
determined as its application.

1. Introduction

In the realm of Best Approximation Theory, it is viable, meaningful and po-
tentially productive to know whether some useful properties of the function be-
ing approximated are inherited by the approximation function. In this perspec-
tive, Meinardus [10] was the first to employ a fixed-point theorem of Schauder
to establish the existence of an invariant approximation. Later, Brosowski [3]
obtained a celebrated result and generalized the result of Meinardus [10]. After-
wards, several results have been established for commuting and noncommuting
mappings in normed linear space, Banach space and locally convex space( for
detail see [1, 2], [9, 11, 12, 13, 14, 15] and references therein).

Recently, Nashine and Khan [12] used the new type of noncommuting maps,
known as subcompatible maps, which are compatible but converse is not true
in general, to prove the common fixed point results in locally convex spaces and
generalized the following theorem of Jungck [6], and the new result is applied
to extend existence results in the area of best approximation.

Theorem 1.1. ([6]) Let T and S be compatible self-maps of a closed convex
subset M of a Banach space X . Suppose S is linear, continuous, and that
T (M) ⊆ S(M). If there exists a ∈ (0, 1) such that x, y ∈M
‖T x− T y‖ ≤ a‖Sx− Sy‖+ (1− a) max{‖T x− Sx‖, ‖T y − Sy‖}, (1)

then T and S have a unique common fixed point in M.
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The present paper generalizes the results of Nashine and Khan [12] to com-
plete linear metric space, which includes Banach spaces and complete metriz-
able locally convex spaces.

2. Preliminaries

In the material to be produced here, the following definitions have been used:

Theorem 2.1. A linear topological space X is metrizable if and only if it has a
countable base of neighbourhoods of zero. The topology of a linear metric space
can always be defined by a real-valued function F : X → R, called F -norm such
that for all x, y ∈ X and scaler K, we have

(i) F (x) ≥ 0;
(ii) F (x) = 0⇒ x = 0;

(iii) F (x+ y) ≤ F (x) + F (y);
(iv) F (λx) ≤ F (x) for all λ ∈ K and |λ| ≤ 1;
(v) if λn → 0, and λ ∈ K, then F (λnx)→ 0.

Definition 1. Let X be a metric linear space. Then a nonempty subsetM in
X is said to be convex, if λx+(1−λ)y ∈M, whenever x, y ∈M and 0 ≤ λ ≤ 1.

A subset M in X is said to be starshaped, if there exists at least one point
q ∈M such that the line segment [x, q] joining x to q is contained inM for all
x ∈M (that is λx+ (1− λ)q ∈M, for all x ∈M and 0 ≤ λ ≤ 1). In this case
q is called the starcenter of M.

Each convex set is starshaped with respect to each of its points, but not
conversely.

Definition 2. ([5]) A pair {T ,S} of self-maps of a complete linear metric
space X is said to be compatible, if F (T Sxn − ST xn)→ 0, whenever {xn} is
a sequence in X such that T xn,Sxn → t ∈ X .

Every commuting pair of mappings is compatible but the converse is not
true in general.

Definition 3. Suppose that M is q-starshaped with p ∈ Fix(S)(set of fixed
point) and is both T - and S-invariant. Then T and S are calledR-subcommuting
on M, if for all x ∈ M there exists a real number R > 0 such that F (ST x −
T Sx) ≤ (Rk )F (((1 − k)q + kT x) − Sx) for each k ∈ (0, 1]. If R = 1, then
the maps are called 1-subcommuting. The S and T are called R-subweakly
commuting onM, if for all x ∈M there exists a real number R > 0 such that
F (ST x− T Sx) ≤ Rdist(Sx, [q, T x]), where [q, x] = (1− k)q + kx : 0 ≤ k ≤ 1.

2.1. Subcompatible Mappings in Complete Linear Metric Space

We extend the concepts of subcompatible mappings to complete linear metric
space in the following way:

Definition 4. ([1, 9]) Suppose thatM is q-starshaped subset of a linear metric
space X . For the self maps S and T ofM with q ∈ Fix(S), define

∧
q(S, T ) =
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{
∧

(S, T k) : 0 ≤ k ≤ 1} where Tkx = seg[T x, q] and
∧

(S, Tk) = {{xn} ⊂ M :
limn Sxn = limn Tkxn = t ∈ M}. Then S and T are called subcompatible, if
limn F (ST xn − T Sxn) = 0 for all sequences xn ∈

∧
q(S, T ).

Obviously, subcompatible maps are compatible but the converse does not
hold, in general, as the following example shows.

Example 2.2. ([1, 9, 11]) Let X = R with usual metric and M = [1,∞).
Let S(x) = 2x − 1 and T (x) = x2, for all x ∈ M. Let q = 1. Then M is q-
starshaped with Sq = q. As for sequences inM converging to 1, limn ‖ST xn−
T Sxn‖ = 0, therefore S and T are compatible. For any sequence {xn} in
M with limn xn = 2, we have, limn Sxn = limn T 2

3
xn = 3 ∈ M. However,

limn ‖ST xn − T Sxn‖ 6= 0. Thus S and T are not subcompatible.

Note that R-subweakly commuting and R-subcommuting maps are subcom-
patible. The following simple example reveals that the converse is not true, in
general.

Example 2.3. Let X = R with usual norm and M = [0,∞). Let S(x) = x
2

if 0 ≤ x < 1 and Sx = x if x ≥ 1, and T (x) = 1
2 if 0 ≤ x < 1 and T x = x2

if x ≥ 1. Then M is 1-starshaped with S1 = 1 and
∧

q(S, T ) = {{xn} : 1 ≤
xn <∞}. Note that S and T are subcompatible but not R-weakly commuting
for all R > 0. Thus S and T are neither R-subweakly commuting nor R-
subcommuting maps.

Definition 5. Let M be a subset of a complete linear metric space X . Let
x0 ∈ X . An element y ∈M is called a best approximant to x0 ∈ X , if

F (x0 − y) = dist(x0,M) = inf{F (x0 − z) : z ∈M}.

Let PM(x0) be the set of best M-approximants to x0 and so

PM(x0) = {z ∈M : F (x0 − z) = dist(x0,M)}.

The following result would also be used in the sequel:

Theorem 2.4. ([7]) Let T and S be compatible self-maps ofM, a closed convex
subset of a Banach space X , satisfying:

‖T x− T y‖ ≤ a‖Sx− Sy‖+ bmax{‖T x− Sx‖, ‖T y − Sy‖}
+cmax{‖Sx− Sy‖, ‖T x− Sx‖, ‖T y − Sy‖}, (2)

for x, y ∈M, where a, b, c > 0 and a+ b+ c = 1. If S is linear and continuous
in M and T (M) ⊆ S(M), then T and S have a unique common fixed point in
M.

3. Common fixed point theorem in complete linear metric space

In this section, we prove more general result in common fixed point theory
for subcompatible mappings in complete linear metric space:
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Theorem 3.1. LetM be a nonempty closed convex subset of a complete linear
metric space X . Suppose the pair {T ,S} of self-mappings is subcompatible ofM
such that T (M) ⊆ S(M), and S is linear with q ∈ Fix(S). If S is continuous
and T and S satisfy for all x, y ∈M
F (T x−T y)≤aF (Sx−Sy)+bmax{dist([T x, q],Sx), dist([T y, q],Sy)}

+cmax{F (Sx−Sy), dist([T x, q],Sx), dist([T y, q],Sy)}, (3)

where a, b, c > 0 and a+ b+ c = 1, then Fix(T )∩Fix(S) 6= ∅, provided one of
the following conditions holds:

(C1) clT (M) is compact and T is continuous;
(C2) Fix(S) is bounded and T is a compact map;
(C3) M is bounded and complete, T is hemicompact and T is continuous;
(C4) M is weakly compact, S is weakly continuous and I − T is demiclosed

at 0, where I is identity map;
(C5) M is weakly compact and T is completely continuous.

Proof. Choose a sequence {kn} ⊂ (0, 1) with kn → 1 as n → ∞. Define Gn :
M→M by

Gnx = knT x+ (1− kn)q

for some q ∈M and for all x ∈M. Then for each n, Gn(M) ⊆ S(M) asM is
convex, S is linear, q ∈ Fix(S) and T (M) ⊆ S(M). The subcompatibility of
the pair {S, T } implies that

0 ≤ limm F (GnSxm − SGnxm)
≤ limm F (kn(T Sxm − ST xm)) + limm F ((1− kn)(q − Sq))
≤ limm F (T Sxm − ST xm)
= 0,

for any {xm} ⊂ M with limm Gnxm = limm Sxm = t ∈M.
Thus the pair {Gn,S} is compatible for each n. Also

F (Gnx− Gny) = F (kn(T x− T y))
≤ F (T x− T y)
≤ aF (Sx− Sy) + bmax{dist([T x, q],Sx), dist([T y, q],Sy)}

+cmax{F (Sx− Sy), dist([T x, q],Sx), dist([T y, q],Sy)}
≤ aF (Sx− Sy) + bmax{F (Gnx− Sx), F (Gny − Sy), }

+cmax{F (Sx− Sy), F (Gnx− Sx), F (Gny − Sy)},

for all x, y ∈M.

(C1) Since T (M) is compact, Gn(M) is also compact. By Theorem 2.4, for
each n ≥ 1, there exists yn ∈ M such that yn = Syn = Gnyn. The
compactness of T (M) implies that there exists a subsequence {T ym}
of {T yn} such that T ym → y as m → ∞. Then the definition of
Gmym implies ym → y, so by the continuity of T and S we have y ∈
Fix(T ) ∩ Fix(S). Thus Fix(T ) ∩ Fix(S) 6= ∅.
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(C2) As in (C1), there is a unique yn ∈ M such that yn = Gnyn = Syn.
As T is compact and {yn} being in Fix(S) is bounded so {T yn} has
a subsequence {T ym} such that {T ym} → y as m → ∞. Then the
definition of Gmym implies ym → y, so by the continuity of T and S
we have y ∈ Fix(T ) ∩ Fix(S). Thus Fix(T ) ∩ Fix(S) 6= ∅.

(C3) As in (C1), there exists yn ∈ M such that yn = Syn = Gnyn. And M
is bounded, so yn → T yn = (1 − (kn)−1)(yn − q) → 0 as n → ∞ and
hence F (yn−T yn)→ 0 as n→∞. The hemicompactness of T implies
that {yn} has a subsequence {yj} which converges to some z ∈ M.
By the continuity of T and S we have z ∈ Fix(T ) ∩ Fix(S). Thus
Fix(T ) ∩ Fix(S) 6= ∅.

(C4) As in (C1), there exists yn ∈ M such that yn = Syn = Gnyn. Since
M is weakly compact, we can find a subsequence {ym} of {yn} in M
converging weakly to y ∈M as m→∞ and as S is weakly continuous
so Sy = y. By (C3), Iym − T ym → 0 as m→∞. The demiclosedness
of I − T at 0 implies that Sy = T y. Thus Fix(T ) ∩ Fix(S) 6= ∅.

(C5) As in (C4), we can find a subsequence {ym} of {yn} in M converg-
ing weakly to y → M as m → ∞. Since T is completely con-
tinuous, T ym → T y as m → ∞. Since kn → 1, ym = Gmym =
kmT ym + (1− km)q → T y as m → ∞. Thus T ym → T 2y as m → ∞
and consequently T 2y = T y implies that T w = w, where w = T y.
Also, since Sym = ym → T y = w, using the continuity of I and the
uniqueness of the limit, we have Sw = w. Hence Fix(T )∩Fix(S) 6= ∅.

�

An immediately consequence from Theorem 3.1 as,

Corollary 3.2. Let M be a nonempty closed convex subset of a complete
metrizable topological convex metric space X . Suppose the pair {T ,S} of self-
mappings is subcompatible of M such that T (M) ⊆ S(M), and S is linear
with q ∈ Fix(S). If S is continuous and T and S satisfy (3) for all x, y ∈M,
where a, b, c > 0 and a + b + c = 1, then Fix(T ) ∩ Fix(S) 6= ∅, under each
condition of Theorem 3.1.

Corollary 3.3. Let M be a nonempty closed convex subset of a Banach space
X . Suppose the pair {T ,S} of self-mappings is subcompatible of M such that
T (M) ⊂ S(M), and S is linear with q ∈ Fix(S). If S is continuous and T
and S satisfy (3) for all x, y ∈ M, where a, b, c > 0 and a + b + c = 1, then
Fix(T ) ∩ Fix(S) 6= ∅, under each condition of Theorem 3.1.

4. Invariant approximation in complete linear metric space

In this section, we establish more general results in invariant approximations
theory with the aid of more general class of noncommuting mappings, known
as, subcompatible mappings, as application of Theorem 3.1.
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Theorem 4.1. Let X be a complete linear metric space and T ,S : X → X . Let
M be subset of X such that T (∂M) ⊆M and x0 ∈ Fix(T )∩Fix(S). Suppose
S is linear on PM(x0), q ∈ Fix(S), PM(x0) is nonempty closed and convex,
and S(PM(x0)) = PM(x0). If S is continuous, the pair {T ,S} is subcompatible
and satisfy (3) for all x, y ∈ PM(x0) where a, b, c > 0 and a+b+c = 1. Suppose
F (T x−x0) ≤ F (Sx−x0) for all x ∈M, then PM(x0)∩Fix(T )∩Fix(S) 6= ∅,
provided one of the following conditions holds:

(BA1) clT (M) is compact and T is continuous;
(BA2) Fix(S) is bounded and T is a compact map;
(BA3) PM(x0) is bounded and complete, T is hemicompact and T is contin-

uous;
(BA4) PM(x0) is weakly compact, S is weakly continuous and I − T is demi-

closed at 0, where I is identity map;
(BA5) PM(x0) is weakly compact and T is completely continuous.

Proof. Let y ∈ PM(x0). Then y ∈ ∂M and so T y ∈M, because T (∂M) ⊆M.
Now since T x0 = x0 = Sx0, we have

F (T y − x0) ≤ F (Sy − x0) = dist(x0,M).

This shows that T y ∈ PM(x0). Consequently, T (PM(x0)) ⊆ PM(x0) =
S(PM(x0)). Now Theorem 3.1 guarantees that PM(x0) ∩ Fix(T ) ∩ Fix(S) 6=
∅. �

Define CSM(x0) = {x ∈M : Sx ∈ PM(x0)} and D∗ = PM(x0) ∩ CSM(x0).

Theorem 4.2. Let X be a complete linear metric space and T ,S : X → X . Let
M be subset of X such that T (∂M) ⊆M and x0 ∈ Fix(T )∩Fix(S). Suppose
S is linear on D∗, q ∈ Fix(S), D∗ is nonempty closed and convex, S(D∗) = D∗.
If S is nonexpansive, the pair {T ,S} is subcompatible and satisfy (3) for all
x, y ∈ D∗ where a, b, c > 0 and a+b+c = 1. Suppose F (T x−x0) ≤ F (Sx−x0)
for all x ∈ M, then PM(x0) ∩ Fix(T ) ∩ Fix(S) 6= ∅, under each condition of
Theorem 4.1.

Proof. Let y ∈ D∗, then Sy ∈ D∗, since S(D∗) = D∗. By the definition of D∗,
y ∈ ∂M. Also T y ∈M, since T (∂M) ⊆M. Now since T x0 = x0 = Sx0,

F (T y − x0) ≤ F (Sy − x0) = dist(x0,M),

since Sy ∈ PM(x0). This implies that T y is also closest to x0, so T y ∈ PM(x0).
As S is nonexpansive on PM(x0) ∪ {x0},

F (ST y − x0) = F (ST y − Sx0) ≤ F (T y − x0) ≤ F (Sy − Sx0) = F (Sy − x0).

Thus, ST y ∈ PM(x0). This implies that T y ∈ CSM(x0) and hence T y ∈ D∗.
So T and S are selfmaps on D∗. Hence, all the condition of the Theorem 3.1
are satisfied. Thus, there exists z ∈ PM(x0) such that z = Sz = T z. �
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Theorem 4.3. Let X be a complete linear metric space and T ,S : X → X .
Let M be subset of X such that T (∂M∩M) ⊆M and x0 ∈ Fix(T )∩Fix(S).
Suppose S is linear on D∗, q ∈ Fix(S), D∗ is nonempty closed and convex,
S(D∗) = D∗. If S is nonexpansive, the pair {T ,S} is subcompatible and satisfy
(3) for all x, y ∈ D∗ where a, b, c > 0 and a+ b+ c = 1. Suppose F (T x−x0) ≤
F (Sx − x0) for all x ∈ M, then PM(x0) ∩ Fix(T ) ∩ Fix(S) 6= ∅, under each
condition of Theorem 4.1.

Proof. Let x ∈ D∗. Then, x ∈ PM(x0) and hence F (x − x0) = dist(x0,M).
Note that for any k ∈ (0, 1),

F (kx0 + (1− k)x− x0) = F ((1− k)(x− x0)) < dist(x0,M).

It follows that the line segment {kx0 + (1 − k)x : 0 < k < 1} and the set M
are disjoint. Thus x is not in the interior of M and so x ∈ ∂M∩M. Since
T (∂M∩M) ⊂ M, T x must be in M. Along with the lines of the proof of
Theorem 4.2, we have the result. �

Remark 1. It is observed that S(PM(x0)) ⊂ PM(x0) implies PM(x0) ⊂ D∗
and hence D∗ = PM(x0). Consequently, Theorem 4.2, 4.3 remain valid when
D∗ = PM(x0).

Remark 2. Theorem 3.1 - Theorem 4.3 generalize the results of Jungck and
Hussain [8, Theorem 2.3 - Threom 2.5] in the sense that the more generalized
noncommuting mappings, that is, subcompatible mappings have been used in
place of compatible mappings.

Remark 3. Theorem 3.1 contains [2, Theorem 2.2] and [4, Theorem 1].

Remark 4. Theorem 4.1 - Theorem 4.3 contain Theorem 3.2 of Al - Tha-
gafi [2], Theorem 3 of Sahab et al. [13] and Singh [14, 15, 16] in the sense that
the more generalized noncommuting mappings(subcommuting mappings) and
generalized relatively nonexpansive maps have been used in place of relatively
nonexpansive commuting maps.

Recall that =0 denotes the class of closed convex subset of X containing
0. For M ∈ =0, we define Mx0

= {x ∈ M : F (x) ≤ 2F (x0)}. It is clear
PM(x0) ⊂ =0.

Theorem 4.4. Let X be a complete linear metric space and T ,S : X → X
with x0 ∈ Fix(T ) ∩ Fix(S) and M ∈ =0 such that T (Mx0) ⊂ S(M) ⊂ M.
Suppose F (T x − x0) ≤ F (Sx − x0), F (Sx − x0) ≤ F (x − x0) for all x ∈ M,
the pair {T ,S} is continuous on M and one of the following two conditions is
satisfied:

(a) clS(M) is compact,
(b) clT (M) is compact.

Then

(i) PM(x0) is nonempty, closed and convex;
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(ii) T (PM(x0)) ⊂ S(PM(x0)) ⊂ PM(x0) provided F (Sx−x0) ≤ F (x−x0)
for all x ∈ CSM(x0);

(iii) PM(x0) ∩ Fix(T ) ∩ Fix(S) 6= ∅ provided F (Sx − x0) ≤ F (x − x0)
for all x ∈ CSM(x0), S is linear on PM(x0), PM(x0) is closed and
convex, S(PM(x0)) = PM(x0), the pair {T ,S} is subcompatible on
PM(x0) and satisfies (3) for all x, y ∈ PM(x0) where a, b, c > 0 and
a+ b+ c = 1 and q ∈ Fix(S).

Proof. (i) Let r = dist(x0,M). Then there is a minimizing sequence {yn}
in M such that limm F (x0 − yn) = r. As clS(M) is compact, so {Syn} has
a convergent subsequence {Sym} with Sym = u (say) in M. Now, by using
F (Sx− x0) ≤ F (x− x0), we get

r ≤ F (u− x0) = lim
m
F (Sym − x0) ≤ lim

m
F (ym − x0) = lim

m
F (yn − x0) = r.

Hence u ∈ PM(x0). Thus PM(x0) is nonempty, closed and convex. Similarly,
when clT (M) is compact, we get the same conclusion by using inequalities
F (T x− x0) ≤ F (Sx− x0), F (Sx− x0) ≤ F (x− x0) for all x ∈M.

(ii) Let y ∈ PM(x0). Then

F (T x− x0) ≤ F (Sx− x0) = dist(x0,M).

This implies that T y ∈ PM(x0) and so T (PM(x0)) ⊂ PM(x0). Also we have
S(PM(x0)) ⊂ PM(x0). Let y ∈ T (PM(x0)). Since T (Mx0

) ⊂ S(M) and
PM(x0) ⊂ Mx0 , there exist y ∈ PM(x0) and x ∈ M such that y = T z = Sx.
Thus, we have

F (Sx− x0) = F (T z − x0) ≤ F (Sy − x0) ≤ F (y − x0) = dist(x0,M).

Hence, x ∈ CSM(x0) = PM(x0) and so (ii) holds.
(iii) (a) By (i), PM(x0) is closed and (ii) and PM(x0) is S and T -invariant.

Further, PM(x0)∩Fix(S) 6= ∅ implies that there exists q ∈ PM(x0) such that
q ∈ Fix(S). By (ii), compactness of clS(M) implies that clT (PM(x0)) is
compact. The conclusion now follows from Theorem 3.1(i) applied to PM(x0).

(b) By (ii), the compactness of clT (M) implies that clT (PM(x0)) is com-
pact. Theorem 3.1(i) further guarantees that PM(x0) ∩ Fix(T ) ∩ Fix(S) 6= ∅.

�
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