DOI QR코드

DOI QR Code

Effects of Acute Soccer Game on Serum Levels of Neurotrophins and Neurocognitive Functions in Male Adolescents

1회성 축구활동이 남자 청소년의 혈청 neurotrophins 수준과 신경인지 기능에 미치는 영향

  • Yang, Jung-Su (Department of Physical Education, College of Natural Science, Hallym University) ;
  • Yoo, Shin-Hwan (Department of Physical Education, College of Natural Science, Hallym University) ;
  • Cho, Su-Youn (Department of Physical Education, Yonsei University) ;
  • Roh, Hee-Tae (Department of Physical Education, Yonsei University)
  • 양정수 (한림대학교 자연과학대학 체육학부) ;
  • 유신환 (한림대학교 자연과학대학 체육학부) ;
  • 조수연 (연세대학교 체육교육학과) ;
  • 노희태 (연세대학교 체육교육학과)
  • Received : 2012.09.27
  • Accepted : 2012.11.12
  • Published : 2012.11.30

Abstract

The purpose of the present research is to investigate the effects of acute soccer game on serum levels of neurotrophins and neurocognitive function. The subjects of the research were 15 healthy male adolescents. The subjects underwent two experiments: one experiment in the soccer game treatment (SOC) condition, and the other in the self-study treatment (CON) condition. Blood samples were collected at three times: before treatment (Pre), after treatment (Post), and 2 hours post treatment (Post-2 h) for the analyses of serum brain-derived neurotrophic factor (BDNF), nerve growth factor (NGF), and insulin-like growth factor-1 (IGF-1). For the measurements of neurocognitive functions, the Stroop Color-Word test was performed at blood collecting times. The results of the research showed that the serum levels of BDNF, NGF, and IGF-1 were significantly increased after the soccer game (p<0.05), and significantly higher in SOC than CON at Post (p<0.05). In the Stroop Color-Word test, significantly increased scores were observed in SOC at Post (p<0.05), and significantly higher in SOC than in CON at Post and Post-2 h (p<0.05). These results suggest that acute soccer game has positive effects on neurocognitive functions by increasing the neurotrophins.

본 연구의 목적은 1회성 축구활동이 남자 청소년의 혈청 뉴로트로핀 수준과 신경인지 기능에 미치는 영향을 규명하는데 있다. 연구의 대상은 건강한 남자 청소년 15명으로 하였으며, 연구 대상은 축구활동 처치(SOC) 조건과 자율학습 처치(CON) 조건의 2가지 처치 조건에 참여하였다. 채혈은 처치 전(Pre), 처치 후(Post), 처치 후 2시간(Post-2 h) 시점에서 총 3회 실시하였으며, 채취된 혈액을 이용하여 혈청 serum brain-derived neurotrophic factor (BDNF), nerve growth factor (NGF), insulin-like growth factor-1 (IGF-1)을 분석하였다. 신경인지 기능의 평가는 Stroop 색체-단어 검사를 이용하였으며, 채혈 시점과 동일한 시점에서 측정하였다. 연구 결과, 혈청 BDNF, NGF, IGF-1 수준은 축구활동 후 유의하게 증가하였으며(p<0.05), Post 시점에서 SOC 조건이 CON 조건과 비교하여 유의하게 높게 나타났다(p<0.05). Stroop 색체-단어 검사는 색체-단어 검사 점수에서 축구활동 후 유의한 증가를 나타내었으며(p<0.05), Post 시점과 Post-2 h 시점에서 SOC 조건이 CON 조건과 비교하여 유의하게 높게 나타났다(p<0.05). 이상의 결과를 종합하면, 1회성 축구활동이 뉴로트로핀을 증가시켜 신경인지 기능에 긍정적 영향을 나타낸 것으로 판단된다.

Keywords

References

  1. Al-Jarrah, M., Jamous, M., Al Zailaey, K. and Bweir, S. O. 2010. Endurance exercise training promotes angiogenesis in the brain of chronic/progressive mouse model of Parkinson's Disease. NeuroRehabilitation 26, 369-373.
  2. Anand, S. S. and Yusuf, S. 2011. Stemming the global tsunami of cardiovascular disease. Lancet 377, 529-532. https://doi.org/10.1016/S0140-6736(10)62346-X
  3. Antonelli, G., Gatti, R., Prearo, M. and De Palo, E. F. 2009. Salivary free insulin-like growth factor-1 levels: effects of an acute physical exercise in athletes. J. Endocrinol. Invest. 32, 1-5. https://doi.org/10.1007/BF03345669
  4. Bamaç, B., Tamer, G. S., Colak, T., Colak, E., Seyrek, E., Duman, C., Colak S. and Ozbek, A. 2011. Effects of repeatedly heading a soccer ball on serum levels of two neurotrophic factors of brain tissue, BDNF and NGF, in professional soccer players. Biol. Sports 28, 177-181. https://doi.org/10.5604/959284
  5. Barella, L. A., Etnier, J. L. and Chang, Y. K. 2010. The immediate and delayed effects of an acute bout of exercise on cognitive performance of healthy older adults. J. Aging Phys. Act. 18, 87-98.
  6. Berg, U. and Bang, P. 2004. Exercise and circulating insulin- like growth factor-1. Horm. Res. 1, 50-58.
  7. Carro, E., Nunez, A., Busiguina, S. and Torres-Aleman, I. 2000. Circulating insulin-like growth factor I mediates effects of exercise on the brain. J. Neurosci. 20, 2926-2933.
  8. Carro, E., Trejo, J. L, Busiguina, S. and Torres-Aleman, I. 2001. Circulating insulin-like growth factor I mediates the protective effects of physical exercise against brain insults of different etiology and anatomy. J. Neurosci. 21, 5678-5684.
  9. Chae, C. H. and Kim, H. T. 2009. Forced, moderate-intensity treadmill exercise suppresses apoptosis by increasing the level of NGF and stimulating phosphatidylinositol 3-kinase signaling in the hippocampus of induced aging rats. Neurochem. Int. 55, 208-213. https://doi.org/10.1016/j.neuint.2009.02.024
  10. Choi, K. Y. 2005. The relationship among highschool students' participation in sports activities, preference event and cognition of physical education. Master's Thesis, Kyungsung University, Pusan, Korea.
  11. Cotman, C. W., Berchtold, N. C. and Christie, L. A. 2007. Exercise builds brain health: key roles of growth factor cascades and inflammation. Trends Neurosci. 30, 464-472. https://doi.org/10.1016/j.tins.2007.06.011
  12. Ferris, L. T., Williams, J. S. and Shen, C. L. 2007. The effect of acute exercise on serum brain-derived neurotrophic factor levels and cognitive function. Med. Sci. Sports Exerc. 39, 728-734. https://doi.org/10.1249/mss.0b013e31802f04c7
  13. Gold, S. M., Schulz, K. H., Hartmann, S., Mladek, M., Lang, U. E., Hellweg, R., Reer, R., Braumann, K. M. and Heesen, C. 2003. Basal serum levels and reactivity of nerve growth factor and brain-derived neurotrophic factor to standardized acute exercise in multiple sclerosis and controls. J. Neuroimmunol. 138, 99-105. https://doi.org/10.1016/S0165-5728(03)00121-8
  14. Golden, C. and Freshwater, S. 2002. A Manual for the Adult Stroop Color and Word Test. pp.1-68, Stoelting, Chicago.
  15. Gotz, R., Koster, R., Winkler, C., Raulf, F., Lottspeich, F., Schartl, M. and Thoenen, H. 1994. Neurotrophin-6 is a new member of the nerve growth factor family. Nature 372, 266-269. https://doi.org/10.1038/372266a0
  16. Griffin, E., W., Mullally, S., Foley, C., Warmington, S. A., O'Mara, S. M. and Kelly, A. M. 2011. Aerobic exercise improves hippocampal function and increases BDNF in the serum of young adult males. Physiol. Behav. 104, 934-941. https://doi.org/10.1016/j.physbeh.2011.06.005
  17. Gu, H. M., Lee, K. H., Shin, D. S., Yu, J. and Choi, J. S. 1992. Relationships between physical exercise and cognitive abilities. J. Sport Sci. 3, 60-76.
  18. Hillman, C. H., Erickson, K. I. and Kramer, A. F. 2008. Be smart, exercise your heart: exercise effects on brain and cognition. Nat. Rev. Neurosci. 9, 58-65. https://doi.org/10.1038/nrn2298
  19. Hwang, T. H. 2008. The Comparative Study of Sport Events and Perception of Physical Education in Middle School Students. Master's Thesis, Kyugnam University, Masan, Korea.
  20. Joe, L. 1997. Conditioning for soccer. pp.46-72, Mcgraw-hill, NewYork.
  21. Karege, F., Schwald, M. and Cisse, M. 2002. Postnatal developmental profile of brain-derived neurotrophic factor in rat brain and platelets. Neurosci. Lett. 328, 261-264. https://doi.org/10.1016/S0304-3940(02)00529-3
  22. Kim, M. H. and Byun, J. J. 2004. Training effects of soccer players in the physiological aspects. J. Coaching Development 6, 43-50.
  23. Lee, H. H. 2009. Effects of treadmill exercise on memory, hippocampal cell proliferation, BDNF, TrkB, and forebrain cholinergic cells in adolescent rats. J. Life Sci. 19, 403-410. https://doi.org/10.5352/JLS.2009.19.3.403
  24. Lee, H. H., Yoon, J. H. and Kim, S. H. 2007. Effects of treadmill exercise on memory and hippocampal BDNF Expression in streptozotocin-induced diabetic rats. J. Life Sci. 17, 1464-1471. https://doi.org/10.5352/JLS.2007.17.11.1464
  25. Li. J., Ding, Y. H., Rafols, J. A., Lai, Q., McAllister, J. P. and Ding, Y. 2005. Increased astrocyte proliferation in rats after running exercise. Neurosci. Lett. 386, 160-164. https://doi.org/10.1016/j.neulet.2005.06.009
  26. McGregor, K. M., Zlatar, Z., Kleim, E., Sudhyadhom, A., Bauer, A., Phan, S., Seeds, L., Ford, A., Manini, T. M., White, K. D., Kleim, J. and Crosson, B. 2011. Physical activity and neural correlates of aging: A combined TMS/fMRI study. Behav. Brain Res. 222, 158-168. https://doi.org/10.1016/j.bbr.2011.03.042
  27. Oh, M. J., Han, J. D., Seo, T. B., Kim, J. O. and Jeong, I. G. 2011. The effects of quantity of treadmill exercise on expression of neurotrophins and receptor after spinal cord hemisection in the rats. Exercise Science 20, 1226-1726.
  28. Pan, W., Banks, W. A., Fasold, M. B., Bluth, J. and Kastin, A. J. 1998. Transport of brain-derived neurotrophic factor across the blood-brain barrier. Neuropharmacology 37, 1553-1561. https://doi.org/10.1016/S0028-3908(98)00141-5
  29. Park, K. Y. and Chae, S. D. 2010. The effect of after-school soccer program on body physique, physical fitness, and mental health in boys. middle school. J. Sport Leisure Studies 41, 785-793.
  30. Poduslo, J. F. and Curran, G. L. 1996. Permeability at the blood-brain and blood-nerve barriers of the neurotrophic factors: NGF, CNTF, NT-3, BDNF. Brain Res. Mol. Brain Res. 36, 280-286. https://doi.org/10.1016/0169-328X(95)00250-V
  31. Pyun, M. Y. 2010. The effect of educational dance and band exercise on body composition and BDNF related factors in elementary school students. Ph. D. Thesis, Pusan University, Pusan, Korea.
  32. Reinhardt, R. R. and Bondy, C. A. 1994. Insulin-like growth factors cross the blood-brain barrier. Endocrinology 135, 1753-1761. https://doi.org/10.1210/en.135.5.1753
  33. Roh, H. T. 2010. Effects of Different Fluid Replacements during Exercise in High Ambient Temperature on Cognitive Functions and Oxidative DNA Damages among Elite Athletes. Ph. D. Thesis, Yonsei University, Seoul, Korea.
  34. Stroop, J. R. 1935. Studies of interference in serial verbal reactions. J. Exp. Psychol. 18, 643-662. https://doi.org/10.1037/h0054651
  35. Trejo, J. L., Carro, E. and Torres-Aleman, I. 2001. Circulating insulin-like growth factor I mediates exercise-induced increases in the number of new neurons in the adult hippocampus. J. Neurosci. 21, 1628-1634.
  36. Van der Elst, W., Van Boxtel, M. P., Van Breukelen, G. J. and Jolles, J. 2006. The Stroop color-word test: influence of age, sex, and education; and normative data for a large sample across the adult age range. Assessment 13, 62-79. https://doi.org/10.1177/1073191105283427
  37. Van Praag, H. 2009. Exercise and the brain: something to chew on. Trends Neurosci. 32, 283-290. https://doi.org/10.1016/j.tins.2008.12.007
  38. Winter, B., Breitenstein, C., Mooren, F. C., Voelker, K., Fobker, M., Lechtermann, A., Krueger, K., Fromme, A., Korsukewitz, C., Floel, A. and Knecht, S. 2007. High impact running improves learning. Neurobiol. Learn. Mem. 87, 597-609. https://doi.org/10.1016/j.nlm.2006.11.003
  39. Woo, J. H. 2012. The effects of exercise on neurotrophins, hepatocyte growth factor (HGF), and oxidative stress in obese children. J. Life Sci. 22, 569-574. https://doi.org/10.5352/JLS.2012.22.5.569
  40. Wu, C., Chang, Y. T., Yu, L., Chen, H. I., Jen, C. J., Wu, S. Y., Lo, C. P. and Kuo, Y. M. 2008. Exercise enhance the proliferation of neurral stem cells and neurite growth and survival of neuronal progenitor cells in dentate gyrus of middle-aged mice. J. Appl. Physiol. 105, 1585-1594. https://doi.org/10.1152/japplphysiol.90775.2008
  41. Yanagisawa, H., Dan, I., Tsuzuki, D., Kato, M., Okamoto, M., Kyutoku, Y. and Soya, H. 2010. Acute moderate exercise elicits increased dorsolateral prefrontal activation and improves cognitive performance with Stroop test. Neuroimage 50, 1702-10. https://doi.org/10.1016/j.neuroimage.2009.12.023
  42. Zoladz, J. A., Pilc, A., Majerczak, J., Grandys, M., Zapart- Bukowska, J. and Duda, K. 2008. Endurance training increases plasma brain-derived neurotrophic factor concentration in young healthy men. J. Physiol. Pharmacol. 59, 119-132.

Cited by

  1. Association between BDNF and Antidepressant Effects of Exercise in Youth: A Preliminary Study vol.27, pp.1, 2016, https://doi.org/10.5765/jkacap.2016.27.1.72