DOI QR코드

DOI QR Code

A Study on the Possibility of Using the Aerial-Based Vehicle Detection System for Real-Time Traffic Data Collection

항공 기반 차량검지시스템의 실시간 교통자료 수집에의 활용 가능성에 관한 연구

  • Received : 2011.12.01
  • Accepted : 2011.12.29
  • Published : 2012.04.30

Abstract

In the US, Japan and Germany the Aerial-Based Vehicle Detection System, which collects real-time traffic data using the Unmanned Aerial Vehicle (UAV), helicopters or fixed-wing aircraft has been developed for the last several years. Therefore, this study was done to find out whether the Aerial-Based Vehicle Detection System could be used for real-time traffic data collection. For this purpose the study was divided into two parts. In the first part the possibility of retrieving real-time traffic data such as travel speed from the aerial photographic image using the image processing technique was examined. In the second part the quality of the retrieved real-time traffic data was examined to find out whether the data are good enough to be used as traffic information source. Based on the results of examinations we could conclude that it would not be easy for the Aerial- Based Vehicle Detection System to replace the present Vehicle Detection System due to technological difficulties and high cost. However, the system could be effectively used to make the emergency traffic management plan in case of incidents such as abrupt heavy rain, heavy snow, multiple pile-up, etc.

무인항공기(UAV: Unmanned Aerial Vehicle), 헬리콥터, 항공기를 이용하여 실시간 교통자료를 수집하는 항공 기반 차량 검지시스템(ADS: Aerial-Based Vehicle Detection System)에 관한 연구가 미국, 일본, 독일에서 이루어져 왔다. 따라서 본 연구에서는 ADS의 교통자료 수집 시스템으로 활용 가능성을 검토하기 위하여 먼저 ADS에 의하여 수집된 자료가 이미지프로세싱 등 자료추출 기법을 거쳐 통행속도 등 교통정보를 산출할 수 있는 지를 확인하였다. 다음으로는 ADS에 의하여 수집된 자료의 신뢰성 정도가 교통정보 제공에 적합한 지를 확인하였다. 그 결과 ADS는 기존에 상시적으로 실시간 교통정보 제공을 하기 위하여 사용되고 있는 VDS 등을 대체하기에는 기술적 비용적 측면에서 어려움이 있을 것으로 파악되었다. 하지만 재해 발생 등 비반복적 교통상황이 장시간 발생할 경우 비상교통관리대책 등을 세우기 위한 보완적 방안으로 활용할 수 있을 것이다.

Keywords

References

  1. 한국경제신문 2007-08-28, http://www.hankyung.com/news.
  2. Coifman, Benjamin (2004) Surface Transportation Surveillance from Unmanned Aerial Vehicles, TRB Annual Meeting.
  3. Daganzo, Carlos F. (1997) Fundamentals of Transportation and Traffic Operations, p. 14.
  4. Puntavungkour, Sompoch and Shibasaki, Ryosuke (2003) Novel Algorithm of Vehicle Detection by Using New Ultra Resolution Aerial Image, Three Line Scanner, IEEE.
  5. Puri, Anuj (2005) A Survey of Unmanned Aerial Vehicles (UAV) for Traffic Surveillance Doctoral Dissertation, University of South Florida.
  6. Rathinam, Sivakumar (2007) Cooperative Path Planning and Vision Based Monitoring Using Unmanned Aerial Vehicles, Doctoral Dissertation, University of California at Berkeley.
  7. Texas Transportation Institute (2002) Defining and Measuring Traffic Data Quality.