DOI QR코드

DOI QR Code

준정류모형을 이용한 하천의 준설 웅덩이 발달 모의

Numerical Simulations of Developing Mining Pit using Quasi-Steady Model

  • 최성욱 (연세대학교 공과대학 토목환경공학과) ;
  • 최성욱 (연세대학교 대학원 토목환경공학과)
  • 투고 : 2012.01.02
  • 심사 : 2012.01.07
  • 발행 : 2012.02.29

초록

본 연구에서는 하천에서 준설 웅덩이의 발달과정을 모의할 수 있는 수치모형을 제시하였다. 제시된 수치모형은 준정류 가정에 기초하는데, 이는 흐름은 정상류이고 하상은 시간에 따라 변한다고 가정하는 것이다. 준정류 모형은 흐름에 비해 하도 변형이 장기간에 걸쳐 진행된다는 사실에 근거한다. 총유사량 공식으로 Engelund and Hansen 공식과 Ackers and White 공식을 이용하여 수치실험을 실시하였다. Engelund and Hansen 공식을 사용하였을 때, Parker(2004)에 제시된 준설웅덩이의 되메움 과정을 정량적으로 유사하게 모의하는 것으로 나타났다. 제시된 모형의 적용성을 검토하기 위하여 선행 실내실험에 적용하였다. 전반적으로 준정류 모형이 실험수로에서 웅덩이의 발달과정을 잘 모의하는 것으로 확인되었다. 그러나 수치모형이 웅덩이 상류측으로 전파되는 두부침식 현상을 재현하지 못하며, 되메움 이후 하류로 전파되는 하상파를 과소 산정하는 것으로 나타났다.

This study presents a numerical model that is capable of simulating the evolution of mining pit in a stream. The numerical model is based on the quasi-steady assumption that the flow is steady with time-dependent morphological change. This hypothesis is valid due to the fact that the stream morphology changes over a long period compared with the time of flow change. Before applications, numerical experiments are carried out with two total load formulas such as Engelund and Hansen's (1967) and Ackers and White's (1973). It is found that the use of Engelund and Hansen's formula reproduces evolution of mining pit best compared with simulated profiles in Parker (2004). Then, the model is applied to two laboratory experiments in the literature. In general, the numerical model simulates properly the evolution of mining pit in laboratory open-channels. However, it is found that the model does not reproduce head-cutting, propagating upstream, and under-estimates the wave of the bed, propagating downstream, after finishing the re-fill of the mining pit.

키워드

참고문헌

  1. 장창래(2010) 수치모의를 이용한 준설하천의 웅덩이 적응에 관한 연구, 한국수자원학회논문집, 한국수자원학회, 제43권 제10호, pp. 921-932. https://doi.org/10.3741/JKWRA.2010.43.10.921
  2. 최성욱, 최성욱(2012). 저수지 퇴배사 모의를 위한 준정류 모형, 한국수자원학회논문집 (심사중). https://doi.org/10.3741/JKWRA.2012.45.2.217
  3. Cao, Z. and Pender, G. (2004). Numerical modeling of alluvial rivers subject to interactive sediment mining and feeding, Advances in Water Resources, Vol. 27, pp. 533-546. https://doi.org/10.1016/j.advwatres.2004.02.017
  4. Ackers, P. and White, W.R. (1973). Sediment transport: new approach and analysis, Journal of Hydraulic Engineering, ASCE, Vol. 99, No. 11, pp. 2041-2060.
  5. Chen, D., Acharya, K., and Stone, M. (2010). Sensitivity analysis of nonequilibrium adaptation parameters for modeling miningpit migration. Journal of Hydraulic Engineering, ASCE, Vol. 136, No. 10, pp. 806-811. https://doi.org/10.1061/(ASCE)HY.1943-7900.0000242
  6. Engelund, F. and Hansen, E. (1967). A Monograph on Sediment Transport in Alluvial Streams, Technisk Vorlag, Copenhagen, Denmark.
  7. Fread, D.L. and Harbaugh, T.E. (1971). Open-channel profiles by Newton's iteration technique. Journal of Hydrology, Vol. 13, No. 1, pp. 70-80. https://doi.org/10.1016/0022-1694(71)90202-2
  8. Garcia, M.H. (1999). Chapter 6. Sedimentation and erosion hydraulics, Hydraulic Design Handbook (edited by L. Mays), McGraw-Hill, New York, NY.
  9. Kondolf, G.M. (1994). Geomorphic and environmental effects of instream gravel mining. Landscape and Urban Planning, Vol. 28, pp. 225-243. https://doi.org/10.1016/0169-2046(94)90010-8
  10. Kondolf, G.M. (1997). Hungry water: Effects of dams and gravel mining on river channels. Environmental Management, Vol. 21, No. 4, pp. 533-551. https://doi.org/10.1007/s002679900048
  11. Lee, H.-Y., Fu, D.-T., and Song, M.-H. (1993). Migration of rectangular mining pit composed of uniform sediments. Journal of Hydraulic Engineering, Vol. 119, No. 1, pp. 64-80. https://doi.org/10.1061/(ASCE)0733-9429(1993)119:1(64)
  12. Lee, H.-Y. and Hwang, S.T. (1994). Migration of backward facing step. Journal of Hydraulic Engineering, Vol. 120, No. 6, pp. 693-705. https://doi.org/10.1061/(ASCE)0733-9429(1994)120:6(693)
  13. Parker, G. (2004). 1d sediment transport morphodynamics with applications to rivers and turbidity currents, e-book (available at http://vtchl.uiuc.edu/people/parkerg/morphodynamics_e-book.htm).
  14. Wright, S. and Parker, G. (2004). Flow resistance and suspended load in sand-bed rivers: Simplified stratification model. Journal of Hydraulic Engineering, ASCE, Vol. 130, No. 8, pp. 796-805. https://doi.org/10.1061/(ASCE)0733-9429(2004)130:8(796)
  15. Wong, M. and Parker, G. (2006). Reanalysis and correction of bedload relation of Meyer-Peter and Muller using their own data. Journal of Hydraulic Engineering, ASCE, Vol. 132, No. 11, pp. 1159-1168. https://doi.org/10.1061/(ASCE)0733-9429(2006)132:11(1159)