Abstract
Recently to overcome limitations of conceptual, hydrological and physics based models for flood stage forecasting, multiple linear regression model as one of data-driven models have been widely adopted for forecasting flood streamflow(stage). The objectives of this study are to compare performance of different multiple linear regression models according to regression coefficient estimation methods and determine most effective multiple linear regression flood stage forecasting models. To do this, the time scale was determined through the autocorrelation analysis of input data and different flood stage forecasting models developed using regression coefficient estimation methods such as LS(least square), WLS(weighted least square), SPW(stepwise) was applied to flood events in Jungrang stream. To evaluate performance of established models, fours statistical indices were used, namely; Root mean square error(RMSE), Nash Sutcliffe efficiency coefficient (NSEC), mean absolute error (MAE), adjusted coefficient of determination($R^{*2}$). The results show that the flood stage forecasting model using SPW(stepwise) parameter estimation can carry out the river flood stage prediction better in comparison with others, and the flood stage forecasting model using LS(least square) parameter estimation is also found to be slightly better than the flood stage forecasting model using WLS(weighted least square) parameter estimation.
최근 수위 예측을 위한 개념적 기반, 수문학적, 물리적 기반 모형 등의 단점을 극복하고자 홍수예측을 위해 자료지향형 모형 중의 하나인 다중선형회귀 모형이 널리 도입되고 있다. 본 연구의 목적은 이러한 다중선형회귀 모형의 서로 다른 회귀계수 선정 방법에 따른 홍수예측 성능을 비교 검토하고 이를 통해 적절한 다중회귀 홍수예측 모형을 구축하는 것이다. 이를 위해 입력자료의 자기상관분석을 통해 독립변수의 시간 규모를 결정한 후 최소 자승법, 가중 최소 자승법, 단계별 선택법의 각기 다른 회귀계수 산정 방법을 이용한 홍수예측 모형을 구축하고 중랑천 유역의 다양한 홍수사상에 대해 적용하였다. 구축된 모형들의 성능을 평가하기 위해 평균제곱근오차, Nash-Suttcliffe 효율계수, 평균절대오차, 수정 결정계수와 같이 4개의 통계지표들을 사용하였다. 모의결과 단계별 선택법을 이용한 다중선형회귀 홍수예측 모형이 가장 정확한 예측 결과를 보였고, 최소자승법을 이용한 홍수예측 모형이 가중 최소자승법을 이용한 홍수예측 모형보다 좀 더 나은 예측 결과를 나타냈다.