DOI QR코드

DOI QR Code

지하 탐사 레이더 영상에서 지하의 비균일 클러터 저감을 위한 고유 영상기반 신호처리

Eigenimage-Based Signal Processing for Subsurface Inhomogeneous Clutter Reduction in Ground-Penetrating Radar Images

  • 현승엽 (제주대학교 통신공학과) ;
  • 김세윤 (한국과학기술연구원 영상미디어연구센터)
  • Hyun, Seung-Yeup (Dept. of Telecommunications Engineering, Jeju National University) ;
  • Kim, Se-Yun (Imaging Media Research Center, Korea Institute of Science and Technology)
  • 투고 : 2012.07.27
  • 심사 : 2012.10.08
  • 발행 : 2012.11.30

초록

지하 탐사 레이더(GPR: Ground-Penetrating Radar) 영상에서 지하의 비균일성에 의한 클러터(clutter)의 영향을 저감할 수 있는 고유 영상(eigenimage) 기반의 신호처리 기법을 제시하였다. GPR 탐사의 B-scan 영상에 기존의 고유 영상 필터링 기법을 적용하면 안테나 링잉, 송수신 안테나 간의 직접 결합(direct coupling)과 지표면 반사와 같이 비교적 균일한 클러터는 충분히 제거할 수 있다. 그러나, 지하의 비균일성(inhomogenity)에 의한 불규칙적인 클러터는 제거되지 못한 채 여전히 남아 있어서, 표적 신호(target signal)는 클러터에 의해 왜곡되거나 가려진다. 고유 영상 필터링한 영상들의 동일 픽셀(pixel) 간의 관계를 비교해 보면, 지하의 클러터와 표적에 해당하는 픽셀은 서로 다른 상관성이 존재하였다. 상관성이 높은 픽셀은 강화하면서 상관성이 낮은 픽셀은 저감할 수 있도록 고유 영상 필터링한 영상들에서 동일 픽셀간 기하 평균 신호처리 방법을 제안하였다. 불규칙 매질 분포(random media distribution)를 갖는 비균일 지하 속의 표적에 대한 GPR 탐사를 불규칙 매질 생성 기법(randommedia generation technique)과 시간 영역 유한 차분(FDTD: Finite-Difference Time-Domain)법으로 모의계산하고, 제안한 신호처리 방법을 GPR 탐사의 B-scan 자료에 적용하였다. 제안한 방법은 기존의 고유 영상 필터링에 비해서 지하의 비균일 클러터를 현저히 저감하고, 표적신호는 충분히 강화할 수 있음을 보였다.

To reduce the effects of clutters with subsurface inhomogenities in ground-penetrating radar(GPR) images, an eigenimage based signal-processing technique is presented. If the conventional eigenimage filtering technique is applied to B-scan images of a GPR survey, relatively homogeneous clutters such as antenna ringing, direct coupling between transmitting and receiving antennas, and soil-surface reflection, can be removed sufficiently. However, since random clutters of subsurface inhomogenities still remain in the images, target signals are distorted and obscured by the clutters. According to a comparison of the eigenimage filtering results, there is different coherency between subsurface clutters and target signals. To reinforce the pixels with high coherency and reduce the pixels with low coherency, the pixel-by-pixel geometric-mean process after the eigenimage filtering is proposed here. For the validity of the proposed approach, GPR survey for detection of a metal target in a randomly inhomogeneous soil is numerically simulated by using a random media generation technique and the finite-difference time-domain(FDTD) method. And the proposed signal processing is applied to the B-scan data of the GPR survey. We show that the proposed approach provides sufficient enhancement of target signals as well as remarkable reduction of subsurface inhomogeneous clutters in comparison with the conventional eigenimage filtering.

키워드

참고문헌

  1. D. J. Daniels, D. J. Gunton, and H. F. Scott, "Introduction to subsurface radar", IEE Proc., vol. 135, Pt. F, vol. 4, pp. 278-320, Aug. 1988.
  2. D. J. Daniel, Ground Penetrating Radar, 2nd Ed. London: IEE, 2004.
  3. A. van der Merwe, I. J. Gupta, "A novel signal processing technique for clutter reduction in GPR measurement of small, shallow land mines", IEEE Trans. Geosci. Remote Sens., vol. 38, no. 6, pp. 2627- 2637, Nov. 2000. https://doi.org/10.1109/36.885209
  4. S. Tjora, E. Eide, and L. Lundheim, "Evaluation of methods for ground bounce removal in GPR utility mapping", Tenth Int. Conf. on Ground Penetrating Radar, Delft, Netherland, pp. 379-382, Jun. 2004
  5. T. -J. Li, L. -J. Kong, and Z. -O. Zhou, "Symmetry filtering method for GPR clutter reduction", Int. Conf. Microwave and Millimeter Wave Technology, pp. 1515-1517, 2008.
  6. L. Gurel, U. Oguz, "Simulations of ground-penetrating radars over lossy and heterogeneous grounds", IEEE Trans. Geosci. Remote Sens., vol. 39, no. 6, pp. 1190-1197, Jun. 2001. https://doi.org/10.1109/36.927440
  7. U. Oguz, L. Gurel, "Frequency responses of ground-penetrating radars operating over highly lossy grounds", IEEE Trans. Geosci. Remote Sens., vol. 40, no. 6, pp. 1385-1394, Jun. 2002. https://doi.org/10.1109/TGRS.2002.800437
  8. C. D. Moss, F. L. Teixeira, T. E. Yang, and J. A. Kong, "Finite-difference time-domain simulation of scattering from objects in continuous random media", IEEE Trans. Geosci. Remote Sens., vol. 40, no. 1, pp. 178-186, Jan. 2002. https://doi.org/10.1109/36.981359
  9. C. D. Moss, F. L. Teixeira, and J. A. Kong, "Detection of targets in continuous random media: a numerical study using the angular correlation function", Microw. Opt. Technol. Lett., vol. 33, no. 4, pp. 242-247, May 2002. https://doi.org/10.1002/mop.10287
  10. M. E. Yavuz, F. L. Teixeira, "A numerical study of time-reversed UWB electromagnetic waves in continuous random media", IEEE Wireless Antennas Propag. Lett., vol. 4, pp. 43-46, 2005. https://doi.org/10.1109/LAWP.2005.844117
  11. L. Klimes, "Correlation functions of random media", Pure Appl. Geophys., vol. 159, no. 7-8, pp. 1811-1831, Jul. 2002. https://doi.org/10.1007/s00024-002-8710-2
  12. S. -Y. Hyun, S. -W. Kim, and S. -Y. Kim, "FDTD simulation of compact antennas for a ground-penetrating radar", in Proc. ISAP2000, Int. Symp. on Antennas and Propagation, Fukuoka, Japan, pp. 1681-1684, Aug. 2000.
  13. T. T. Wu, R. W. P. King, "The cylindrical antenna with nonreflecting resistive loading", IEEE Trans. Antennas Propag., vol. 13, no. 3, pp. 369-373, May 1965. https://doi.org/10.1109/TAP.1965.1138429
  14. B. Cagnoli, T. J. Ulrych, "Singular value decomposition and wavy reflections in ground-penetrating radar images of base surge deposits", J. Appl. Geophys., vol. 48, no. 3, pp. 175-182, Oct. 2001. https://doi.org/10.1016/S0926-9851(01)00089-1

피인용 문헌

  1. Cavity Detection of Chamber by GPR vol.20, pp.2, 2016, https://doi.org/10.11112/jksmi.2016.20.2.086
  2. Adaptive Filtering Processing for Target Signature Enhancement in Monostatic Borehole Radar Data vol.14, pp.2, 2014, https://doi.org/10.5515/JKIEES.2014.14.2.79
  3. GPR detection of a test bed and development of an image processing program vol.18, pp.4, 2016, https://doi.org/10.12989/cac.2016.18.4.599
  4. Image Processing of GPR Detection Data vol.20, pp.4, 2016, https://doi.org/10.11112/jksmi.2016.20.4.104