DOI QR코드

DOI QR Code

Evaluation of Magnesia Cement Using MgCO3 and Serpentine

MgCO3와 사문석을 사용한 마그네시아 시멘트의 특성평가

  • Lee, Jong-Kyu (Energy & Environment Division, Korea Institute of Ceramic Eng. & Tech.) ;
  • Soh, Jung-Sub (Energy & Environment Division, Korea Institute of Ceramic Eng. & Tech.) ;
  • Chu, Yong-Sik (Energy & Environment Division, Korea Institute of Ceramic Eng. & Tech.) ;
  • Song, Hun (Energy & Environment Division, Korea Institute of Ceramic Eng. & Tech.) ;
  • Park, Ji-Sun (Building Research Department, Korea Institute of Construction Technology)
  • 이종규 (한국세라믹기술원 에너지환경소재본부) ;
  • 소정섭 (한국세라믹기술원 에너지환경소재본부) ;
  • 추용식 (한국세라믹기술원 에너지환경소재본부) ;
  • 송훈 (한국세라믹기술원 에너지환경소재본부) ;
  • 박지선 (한국건설기술연구원 공공건축연구본부)
  • Received : 2012.10.11
  • Accepted : 2012.10.17
  • Published : 2012.11.27

Abstract

MgO based cement for the low-temperature calcination of magnesite required less energy and emitted less $CO_2$ than the manufacturing of Portland cements. Furthermore, adding reactive MgO to Portland-pozzolan cement can improve their performance and also increase their capacity to absorb atmospheric $CO_2$. In this study, the basic research for magnesia cement using $MgCO_3$ and magnesium silicate ore (serpentine) as starting materials was carried out. In order to increase the hydration activity, $MgCO_3$ and serpentinite were fired at a temperature higher than $600^{\circ}C$. In the case of $MgCO_3$ as starting material, hydration activity was highest at $700^{\circ}C$ firing temperature; this $MgCO_3$ was completely transformed to MgO after firing. After the hydration reaction with water, MgO was totally transformed to $Mg(OH)_2$ as hydration product. In the case of using only $MgCO_3$, compressive strength was 35 $kgf/cm^2$ after 28 days. The addition of silica fume and $Mg(OH)_2$ led to an enhancements of the compressive strength to 55 $kgf/cm^2$ and 50 $kgf/cm^2$, respectively. Serpentine led to an up to 20% increase in the compressive strength; however, addition of this material beyond 20% led to a decrease of the compressive strength. When we added $MgCl_2$, the compressive strength tends to increase.

Keywords

References

  1. M. Schneider, M. Romer, M. Tschudin and H. Bolio, Cem. Concr. Res., 41(7), 642 (2011). https://doi.org/10.1016/j.cemconres.2011.03.019
  2. J. Harder, Zement-Kalk-Gips, 59(2), 58 (2006).
  3. A. Santra and R. Sweatman, Energy Procedia, 4, 5243 (2011). https://doi.org/10.1016/j.egypro.2011.02.503
  4. B. Kolani, L. Buffo-Lacarrière, A. Sellier, G. Escadeillas, L. Boutillon and L. Linger, Cement Concr. Compos., 34,(9), 1009 (2012). https://doi.org/10.1016/j.cemconcomp.2012.05.007
  5. B Uzal and L Turanli, Cem. Concr. Res., 33(11), 1777(2003). https://doi.org/10.1016/S0008-8846(03)00173-X
  6. L. Turanli, B. Uzal and F. Bektas, Cem. Concr. Res., 34(12), 2277 (2004). https://doi.org/10.1016/j.cemconres.2004.04.011
  7. J. Temuujin, A. van Riessen and K. J. D. MacKenzie, Construct. Build. Mater., 24(10) 1906 (2010). https://doi.org/10.1016/j.conbuildmat.2010.04.012
  8. T. Tho-in, V. Sata, P. Chindaprasirt and C. Jaturapitakkul, Construct. Build. Mater., 30, 366 (2012). https://doi.org/10.1016/j.conbuildmat.2011.12.028
  9. D. L. Y. Kong and J. G. Sanjayan, Cem. Concr. Res., 40(2), 334 (2010). https://doi.org/10.1016/j.cemconres.2009.10.017
  10. E. N. Kani, A. Allahverdi and J. L. Provis, Cement Concr. Compos., 34(1), 25 (2012). https://doi.org/10.1016/j.cemconcomp.2011.07.007
  11. E. M. Gartner and D. E. Macpee, Cem. Concr. Res., 41, 736 (2011). https://doi.org/10.1016/j.cemconres.2011.03.006
  12. L. J. Vandeperre, M. Liska and A. Al-Tabbaa, Cement Concr. Compos., 30(8), 706 (2008). https://doi.org/10.1016/j.cemconcomp.2008.05.002
  13. M. Liska and A. Al-Tabbaa, Construct. Build. Mater., 22(8), 1789 (2008). https://doi.org/10.1016/j.conbuildmat.2007.05.007
  14. E. Soudee and J. Pera, Cem. Concr. Res., 32(1), 153 (2002). https://doi.org/10.1016/S0008-8846(01)00647-0
  15. Q. Yang, B. Zhu, S. Zhang and X. Wu, Cem. Concr. Res., 30(11), 1807 (2000). https://doi.org/10.1016/S0008-8846(00)00419-1
  16. P. Frantzis and R. Baggott, Cem. Concr. Res., 27(8), 1155 (1997). https://doi.org/10.1016/S0008-8846(97)00126-9