과제정보
연구 과제 주관 기관 : 서울과학기술대학교
참고문헌
- Acuna, E. and Rodriguez, C. (2004), The Treatment of Missing Values and Its Effect in the Classifier Accuracy, in Classification, Clustering and Data Mining Applications, 639-648.
- Batista, G. E. A. P. A. and Monard, M. C. (2003), An Analysis of Four Missing Data Treatment Methods for Supervosed Learning, Applied Artificial Intelligence, 17(5-6), 519-533. https://doi.org/10.1080/713827181
- Bernard, J. and Meng, X. L. (1999), Applications of Multiple Imputation in Medical Studies : From AIDS to NHANES, Statistical Methods in Medical Research, 8(1), 17-36. https://doi.org/10.1191/096228099666230705
- Bishop, C. M. (2006), Pattern Recognition and Machine Learning, Springer, Singapore.
- Breiman, L., Friedman, J., Olshen, R., and Stone, C. (1984), Classification and Regression Trees, Boca Raton, FL : CRC Press.
- Ennett, C. M., Frize, M., and Walker, R. (2008), Imputation of Missing Values by Integrating Neural Networks and Case-Based Reasoning, In: Proceedings of the 30th Annual International IEEE Engineering in Medicine and Biology Society (EBMS '08), Vancouver, BC, Canada, 4337-4341.
- Farhangfar, A., Kurgan, L., and Dy, J. (2008), Impact of Imputation of Missing Values on Classification Error for Discrete Data, Pattern Recognition, 41(12), 3692-3705. https://doi.org/10.1016/j.patcog.2008.05.019
- Farhangfar, A., Kurgan, L., and Pedrycz, W. (2007), A Novel Framework for Imputation of Missing Values in Database, IEEE Transactions on Systems, Man, and Cybernetics-Part A : Systems and Humans 37(5), 692-709.
- Garcia-Laencina, P., Sancho-Gomez, J.-L., Rigueiras-Vidal, A. R., and Verleysen, M. (2009), K-nearest Neighbours with Mutual Information for Simultaneous Classification and Missing Data Imputation, Neurocomputing, 72(7-9), 1483-1493. https://doi.org/10.1016/j.neucom.2008.11.026
- Ghahramani, Z. and Jordan, M. I. (1994), Supervised Learning from Incomplete Data Via an EM Approach, In : Advances in NIPS 6, Morgan Kaufmann, Los Altos, CA, USA, 120-127.
- Hron, K., Templ, M., and Filzmoser, P. (2010), Imputation of Missing Values for Compositional Data using Classical and Robust Methods, Computational Statistics and Data Analytics, 54(12), 3095-3107. https://doi.org/10.1016/j.csda.2009.11.023
- Jerez, J. M., Molina, I., Garcia-Laencina, G., Alba, E., Ribelles, N., Martin, M., and Franco, L. (2010), Missing Data Imputation using Statistical and Machine Learning Methods in a Real Breast Cancer Problem, Artificial Intelligence in Medicine, 50(2), 105-115. https://doi.org/10.1016/j.artmed.2010.05.002
- Jerzy, W.G-B. and Hu, M. (2000), A Comparison of Several Approaches to Missing Attribute Values in Data Mining, In: Proceedings of the 2nd International Conference on Rough Sets and Current Trends in Computing(RSCTC'00), Banff, Canada, 378-385.
- Kang, P. and Cho, S. (2008), Locally Linear Reconstruction for Instance- Based Learnining, Pattern Recognition, 41(11), 3507-3518. https://doi.org/10.1016/j.patcog.2008.04.009
- Li, H., Zhou, X., and Yao, Y. (2009), Missing Values Imputation Hypothesis : An Experimental Evaluation, In Proceedings of the 8th IEEE International Conference on Cognitive Informatics(ICCI '09), Hong Kong, China, 275-280.
- Little, R. J. and Rubin, D. B. (1987), Statistical Analysis with Missing Data, John Wiley and Sons, New York.
- McCullagh, P. and Nelder, J. A. (1990), Generalized Linear Models, New York : Chapman and Hall.
- Kohavi, R., Becker, B., and Sommerfield, D. (1997), Improving Simple Bayes, In: Proceedings of the European Conference on Machine Learning (ECML'97), Prague, Czech Republic.
- Su, X., Khoshgoftaar, T. M., and Greiner, R. (2008), Using Imputation Techniques to Help Learn Accurate Classifiers, In : Proceedings of the 20th IEEE International Conference on Tools with Artificial Intelligence (ICTAI'08), Dayton, OH, USA, 437-444.
- UCI Machine Learning Repository : http://archive.ics.uci.edu/ml/.
- van Buuren, S. and Groothuis-Oudshoorn, K. (2011), MICE : Multivariate Imputation by Chained Equation in R, Journal of Statistical Software, 45(3).
- Witten, I. H. and Frank, E. (2005), Data Mining : Practical Machine Learning Tools and Techniques, 2nd edition, Morgan Faufmann.
- Yu, T., Peng, H., and Sun, W. (2011), Incorporating Nonlinear Relationships in Microarray Missing Value Imputation, IEEE/ACM Transactions on Computational Biology and Bioinformatics, 8(3), 723-731. https://doi.org/10.1109/TCBB.2010.73
- Zhang, P. (2003), Multiple Imputation : Theory and Method, International Statistical Review, 71(3), 581-592.
- Zhang, Y. and Liu, Y. (2009), Data Imputation using Least Squares Support Vector Machines in Urban Arterial Street, IEEE Signal Processing Letters, 15(5), 414-417.