References
- B. Allison, S. Azam, S. Berman, Y. Gao, and A. Pianzola, Extended affine Lie algebras and their root systems, Mem. Amer. Math. Soc. 126 (1997), no. 603, 1-122.
- B. Allison, G. Benkart, and Y. Gao, Central extensions of Lie algebras graded by finite root systems, Math. Ann. 316 (2000), no. 3, 499-527. https://doi.org/10.1007/s002080050341
-
B. Allison, G. Benkart, and Y. Gao, Lie algebras graded by the root systems
$BC_r$ , r${\geq}$ 2, Mem. Amer. Math. Soc. 158 (2002), no. 751, x+158. - S. Azam, Generalized reductive Lie algebars: coonections with extended affine Lie alge-bars and Lie tori, Canad. J. Math. 58 (2006), no. 2, 225-248. https://doi.org/10.4153/CJM-2006-009-8
- S. Azam and V. Khalili, Lie tori and their fixed point subalgebra, Algebra Colloq. 16 (2009), no. 3, 381-396. https://doi.org/10.1142/S1005386709000376
- S. Azam, V. Khalili, and M. Yousofzadeh, Extended affine root system of type BC, J. Lie Theory 15 (2005), no. 1, 145-181.
- S. Azam, H. Yamane, and M. Yousofzadeh, A finite presentation of universal coverings of Lie tori, Publ. RIMS Kyoto Univ. 46 (2010), 507-548.
-
G. Benkart and O. Smirnov, Lie algebras graded by the root system
$BC_1$ , J. Lie Theory 13 (2003), no. 1, 91-132. - S. Berman and R. Moody, Lie algebras graded by finite root systems and the intersection matrix algebras of Slodowy, Invent. Math. 108 (1992), no. 2, 323-347. https://doi.org/10.1007/BF02100608
- N. Bourbaki, Groupes et algebres de Lie, Chap. 4-6, Hermann, Paris 1968.
- Y. Gao, Steinberg unitary Lie algebras and skew-dihedral homology, J. Algebra. 176 (1996), no. 1, 261-304.
- H. Garland, The arithmetic theory of loop groups, Inst. Hautes Etudes Sci. Publ. Math. (1980), no. 52, 5-136.
- V. Khalili, Extension data and their Lie algebras, Algebra Colloq. 18 (2011), no. 3, 461-474. https://doi.org/10.1142/S1005386711000344
- V. Khalili, The core of a locally extended affine Lie algebras, Comm. Algebra 39 (2011), no. 10, 3646-3661. https://doi.org/10.1080/00927872.2010.510812
- R. V. Moody and A. Pianzola, Lie Algebras with Triangular Decomposition, John Wiley, New York, 1995.
- J. Morita and Y. Yoshii, Locally extended affine Lie algebras, J. Algebra 301, (2006), no. 1, 59-81. https://doi.org/10.1016/j.jalgebra.2005.06.013
- K. H. Neeb, Universal central extensions of Lie groups, Acta Appl. Math. 73 (2002). no. 1-2, 175-219. https://doi.org/10.1023/A:1019743224737
- E. Neher, Lie algebras graded by 3-graded root systems and Jordan pairs covered by grids, Amer. J. Math. 118 (1996), no. 2, 439-491. https://doi.org/10.1353/ajm.1996.0018
- E. Neher, Lie tori, C. R. Math. Acad. Sci. Soc. R. Can. 26 (2004), no. 3, 84-89.
- E. Neher, Extended affine Lie algebras, C. R. Math. Acad. Sci. Soc. R. Can. 26 (2004), no. 3, 90-96.
- E. Neher, An introduction to universal central extensions of Lie superalgebras, Groups, rings, Lie and Hopf algebras (St. John's, NF, 2001), 141-166, Math. Appl., 555, Kluwer Acad. Publ., Dordrecht, 2003.
- A. Pianzola, D. Prelet, and J. Sun, Descent constructions for central extensions of infinite dimensional Lie algebras, Manuscripta Math. 122 (2007), no. 2, 137-148. https://doi.org/10.1007/s00229-006-0053-3
- W. L. J. van der Kallen, Infinitesimacally Centrals Extension of Chevally Groups, Springer-Verlag, Berlin, 1973, Lecture Notes in Mathematics, Vol. 356, 1973.
- C. Weibel, An Introduction to Homological Algebra, Cambridge Studies in Advanced Mathematics, 38. Cambridge University Press, Cambridge, 1994.
- Y. Yoshii, Root-graded Lie algebras with compatible grading, Comm. Algebra 20 (2001), no. 8, 3365-3391.
- Y. Yoshii, Root systems extended by an abelian group, and their Lie algebras, J. Lie theory, 14 (2004), no. 2, 371-394.
- Y. Yoshii, Lie tori-a simple characterization of extended affine Lie algebras, Publ. Res. Inst. Math. Sci. 42 (2006), no. 3, 739-762. https://doi.org/10.2977/prims/1166642158
-
M. Yousofzadeh, A presentation of Lie tori of type
$B_l$ , Publ. Res. Inst. Math. Sci. 44 (2008), no. 1, 1-44.