DOI QR코드

DOI QR Code

Efficient Radio Resource Measurement System in IEEE 802.11 Networks

IEEE 802.11 네트워크에서 효율적인 라디오 자원 측정 시스템 연구

  • Received : 2012.09.20
  • Accepted : 2012.10.19
  • Published : 2012.11.30

Abstract

This paper presents the efficient measurement method of radio resource by analyzing various medium occupied elements. The medium occupied time consists of 802.11 frames, wireless interference, and protocol waiting time from a wireless node on a current channel. And it is used to performance metric. Existing research is only measured partial occupied elements, and is lack of validation of measurement unit and scalability on various IEEE 802.11 radio. This paper presents the measurement method of classified occupied elements. To achieve this, we modified 802.11n based OpenHAL device driver to collect the register information of wireless chipset, and to analyze receiving frames in an virtual monitor mode. We conclude accurate medium occupied time measurement system from various validation methods.

본 논문은 무선 매체의 점유 요인을 분석하여 효율적인 라디오 자원 측정 방법을 제안한다. 미디엄 점유 시간은 무선 단말이 현재 채널에서 802.11 프레임, 무선 간섭, 프로토콜 대기 시간에 의해 점유된 시간으로 다양한 분야에서 성능 측정 도구로 이용된다. 기존 연구들은 부분적인 요인만을 측정하고, 측정 도구에 대한 검증 및 다양한 라디오에 대한 확장성이 부족하다. 본 논문은 세분화된 점유 요인들의 측정 방법을 제안한다. 이를 위해 무선 칩셋의 레지스터 정보 수집, 가상 모니터 모드를 통한 프레임 분석을 위해 802.11n 기반 OpenHAL 디바이스 드라이버를 수정하였다. 뿐만 아니라 다양한 검증 방법을 통해 정확한 미디엄 점유 시간을 도출한다.

Keywords

References

  1. IEEE 802.11 Working Group et al. Wireless LAN medium access control (MAC) and physical layer (PHY) specifications. Mar. 2012.
  2. A.P. Jardosh, K.N. Ramachandran, K.C. Almeroth, and E.M. Belding-Royer. Understanding congestion in ieee 802.11 b wireless networks. In Proceedings of the 5th ACM SIGCOMM conference on Internet Measurement, pages 25-25. USENIX Association, 2005.
  3. G. Wu and T. Chiueh. Passive and accurate traffic load estimation for infrastructure mode wireless lan. In Proceedings of the 10th ACM Symposium on Modeling, analysis, and simulation of wireless and mobile systems, pages 109-116. ACM, 2007.
  4. K. Pelechrinis, T. Salonidis, H. Lundgren, and N. Vaidya. Experimental characterization of 802.11 n link quality at high rates. In Proceedings of the fifth ACM international workshop on Wireless network testbeds, experimental evaluation and characterization, pages 39-46. ACM, 2010.
  5. D. Skordoulis, Q. Ni, H.H. Chen, A.P. Stephens, C. Liu, and A. Jamalipour. Ieee 802.11n mac frame aggregation mechanisms for next-generation high-throughput wlans. Wireless Communications, IEEE, 15(1):40-47, 2008.
  6. K. Lakshminarayanan, S. Seshan, and P. Steenkiste. Understanding 802.11 performance in heterogeneous environments. In Proceedings of the 2nd ACM SIGCOMM workshop on Home networks, pages 43 -48. ACM, 2011.
  7. P. Dely, A.J. Kassler, and D. Sivchenko. Theoretical and experimental analysis of the channel busy fraction in ieee 802.11. In Future Network and Mobile Summit, 2010, pages 1-9. IEEE, 2010.
  8. J.P. Javaudin and M. Bellec. Omega project: On convergent digital home networks. In Cross Layer Design (IWCLD), 2011 Third International Workshop on, pages 1-5. IEEE, 2011.
  9. S. Liu, G. Xing, H. Zhang, J. Wang, J. Huang, M. Sha, and L. Huang. Passive interference measurement in wireless sensor networks. In Network Protocols (ICNP), 2010 18th IEEE International Conference on, pages 52-61. IEEE, 2010.
  10. L. Qiu, Y. Zhang, F. Wang, M.K. Han, and R. Mahajan. A general model of wireless interference. In Proceedings of the 13th annual ACM international conference on Mobile computing and networking, pages 171-182. ACM, 2007.
  11. V. Angelakis, S. Papadakis, V.A. Siris, and A. Traganitis. Adjacent channel interference in 802.11 a is harmful: Testbed validation of a simple quantification model. Communications Magazine, IEEE, 49(3):160-166, 2011.
  12. J. Nachtigall, A. Zubow, and J.P. Redlich. The impact of adjacent channel interference in multi-radio systems using ieee 802.11. In Wireless Communications and Mobile Computing Conference, 2008. IWCMC'08. International, pages 874-881. IEEE, 2008.
  13. K. Szczypiorski and W. Mazurczyk. Steganography in ieee 802.11 ofdm symbols. Security and Communication Networks, 2011.
  14. J. Jun, P. Peddabachagari, and M. Sichitiu. Theoretical maximum throughput of ieee 802.11 and its applications. In Network Computing and Applications, 2003. NCA 2003. Second IEEE International Symposium on, pages 249-256. IEEE, 2003.
  15. Y. Xiao and J. Rosdahl. Throughput and delay limits of ieee 802.11. Communications Letters, IEEE, 6(8):355-357, 2002. https://doi.org/10.1109/LCOMM.2002.802035
  16. B. Ginzburg and A. Kesselman. Performance analysis of a-mpdu and a-msdu aggregation in ieee 802.11 n. In Sarnoff symposium, 2007 IEEE, pages 1 -5. Ieee, 2007.
  17. Y. Xiao. Ieee 802.11 n: enhancements for higher throughput in wireless lans. Wireless Communications, IEEE, 12(6):82-91, 2005. https://doi.org/10.1109/MWC.2005.1561948