DOI QR코드

DOI QR Code

Electrochemical Behavior of Mg2+ Ions in MgCl2-CaCl2-NaCl Molten Salt

MgCl2-CaCl2-NaCl 혼합용융염에서 Mg2+ 이온의 전기화학적 거동

  • Ryu, Hyo Yeol (Department of Chemical Engineering, Chungbuk National University) ;
  • Jeong, Sang Mun (Department of Chemical Engineering, Chungbuk National University) ;
  • Kim, Jeong-Guk (Korea Atomic Energy Research Insitute)
  • Received : 2012.06.20
  • Accepted : 2012.07.20
  • Published : 2012.12.01

Abstract

The electrochemical behavior of magnesium ions was examined by cyclic voltammetry in a molten $MgCl_2-CaCl_2$-NaCl salt. The reduction potential of magnesium ions was measured and those values were estimated with the variation of the concentration of $MgCl_2$ and the temperature of molten salts. The diffusion coefficient of the $Mg^{2+}$ ions has been determined at 660, 680, 700, 720 and $740^{\circ}C$. The values were $8.79{\times}10^{-6}$, $9.56{\times}10^{-6}$, $1.17{\times}10^{-5}$, $1.4{\times}10^{-5}$ and $1.77{\times}10^{-5}\;cm^2\;s^{-1}$. The activation energy for the diffusion processes of $Mg^{2+}$ ions was found to be $70.28\;kJ\;mol^{-1}$ by using the Arrhenius equation.

본 연구에서는 $MgCl_2-CaCl_2$-NaCl 혼합용융염에서 $Mg^{2+}$ 이온의 전기화학적 거동을 평가하였다. $MgCl_2-CaCl_2$-NaCl 용융염에서 순환전압전류법 측정을 통해 $Mg^{2+}$이온의 환원전위를 측정하였고, $MgCl_2$의 농도 변화 및 용융염의 온도변화에 따른 환원전위의 영향에 대해 살펴보았다. 그리고 각각 660, 680, 700, 720 및 $740^{\circ}C$의 온도에서 $Mg^{2+}$ 이온의 확산계수를 계산한 결과 $8.79{\times}10^{-6}$, $9.56{\times}10^{-6}$, $1.17{\times}10^{-5}$, $1.4{\times}10^{-5}$$1.77{\times}10^{-5}\;cm^2\;s^{-1}$로 측정되었다. 또한 Arrhenius 식을 통해 $Mg^{2+}$ 이온의 확산에 대한 활성화 에너지는 $70.28\;kJ\;mol^{-1}$로 계산되었다.

Keywords

References

  1. Park, H. K., "Review on the Current Status of Magnesium Smelting," J. KSGE, 11(1), 13-18(2008). https://doi.org/10.1080/12269328.2008.10541279
  2. Gao, F., Nie, Z. R., Wang, Z. H., Gong, X. Z. and Zuo, T. Y., "Assessing Environmental Impact of Magnesium Production Using Pidgeon Process in China," J. Trans. Nonferrous Met. Soc. China., 18(3), 749-754(2008). https://doi.org/10.1016/S1003-6326(08)60129-6
  3. Thayer, R. L. and Neelameggham, R. N., "Improving the Electrolytic Process for Magnesium Production," JOM., 53(8), 15-17 (2001). https://doi.org/10.1007/s11837-001-0128-2
  4. Rajagopalan, N., Srikantan, S., Srinivasan, L. K., Kannan, G. N. and Selvakesavan, A., "Developing an Energy-Efficient Electrolytic Cell for Magnesium," JOM., 52(3), 18-19(2000). https://doi.org/10.1007/s11837-000-0093-1
  5. Jeong, S. M., Jung, J. Y., Seo, C. S. and Park, S. W., "Characteristics of an Electrochemical Reduction of $Ta_{2}O_{5}$ for the Preparation of Metallic Tantalum in a LiCl-$Li_{2}O$ Molten Salt," J. Alloys Compd., 440(1-2), 210-215(2007). https://doi.org/10.1016/j.jallcom.2006.05.139
  6. Jeong, S. M., Yoo, H. Y., Hur, J. M. and Seo, C. S., "Preparation of Metallic Niobium from Niobium Pentoxide by an Indirect Electrochemical Reduction in a $LiCl-Li_{2}O$ Molten Salt," J. Alloys Compd., 452(1), 27-31(2008). https://doi.org/10.1016/j.jallcom.2007.02.057
  7. Jeong, S. M., Shin, H. S., Hong, S. S., Hur, J. M., Do, J. B. and Lee, H. S., "Electrochemical Reduction Behavior of $U_{3}O_{8}$ Powder in a LiCl Molten Salt," J. Electrochim. Acta, 55(5), 1749-1755(2010). https://doi.org/10.1016/j.electacta.2009.10.060
  8. Martinez, A. M., Borresen, B., Haarberg, G. M., Castrillejo, Y. and Tunold, R., "Electrodeposition of Magnesium from $CaCl_{2}-NaCl-KCl-MgCl_{2}$ Melts," J. Electrochem. Soc., 151(7), C508-C513 (2004). https://doi.org/10.1149/1.1758814
  9. Martinez, A. M., Borresen, B., Haarberg, G. M., Castrillejo, Y. and Tunold, R., "Electrodeposition of Magnesium from the Eutectic LiCl-KCl melt," J. Appl. Electrochem., 34(12), 1271-1278(2004). https://doi.org/10.1007/s10800-004-1761-6
  10. Castrillegjo, Y., Martinez, A. M., Pardo, R. and Haarberg, G. M., "Electrochemical Behavior of Magnesium Ions in the Equimolar $CaCl_{2}-NaCl$ Mixture at $550^{\circ}C$," J. Electrochim. Acta, 42(12), 1869-1876(1997). https://doi.org/10.1016/S0013-4686(96)00399-4
  11. Store, T., Haarberg, G. M. and Tunold, R., "Determination of Diffusion Coefficients of Depositing Ions in Molten Chlorides by Transient Electrochemical Techniques," J. Appl. Electrochem., 30(12), 1351-1360(2000). https://doi.org/10.1023/A:1026578713427

Cited by

  1. 수분이 NaKZn-Chloride의 녹는점과 고온안정성에 미치는 영향 vol.56, pp.4, 2018, https://doi.org/10.9713/kcer.2018.56.4.555