DOI QR코드

DOI QR Code

INFRARED SPECTRAL ENERGY DISTRIBUTION OF GALAXIES IN THE AKARI ALL SKY SURVEY: CORRELATIONS WITH GALAXY PROPERTIES AND THEIR PHYSICAL ORIGIN

  • Makiya, R. (Department of Astronomy, School of Science, Kyoto University) ;
  • Totani, T. (Department of Astronomy, School of Science, Kyoto University) ;
  • Takeuchi, T.T. (Institute for Advanced Research, Nagoya University) ;
  • Nagashima, M. (Faculty of Education, Nagasaki University) ;
  • Kobayashi, M.A.R. (Optical and Infrared Astronomy Division, National Astronomical Observatory)
  • Received : 2012.07.03
  • Accepted : 2012.08.22
  • Published : 2012.09.16

Abstract

We will report our recent study on the properties of more than 1,600 galaxies detected by the AKARI All-Sky Survey with physical quantities based on optical and 21-cm observations, to understand the physics determining the infrared spectral energy distribution (Totani et al., 2011). We discover a tight linear correlation for normal star-forming galaxies between the radiation field strength of dust heating (corresponding to dust temperature) and the galactic-scale infrared radiation field, $L_{TIR}/R^2$. This is the tightest correlation of dust temperature ever known, and the dispersion along the mean relation is 13% in dust temperature. This relation can be explained physically by a thin layer of heating sources embedded in a thicker, optically-thick dust screen. We also find that the number of galaxies sharply drops when galaxies become optically thin against dust-heating radiation, indicating that a feedback process to galaxy formation (e.g., by the photoelectric heating) is working when dust-heating radiation is not self-shielded on a galactic scale. We discuss implications from these findings for the $M_{H_I}$ -size relation, the Kennicutt-Schmidt relation, and galaxy formation in the cosmological context.

Keywords

References

  1. Chanial, P., Flores, H., Guiderdoni, B., Elbaz, D., Hammer, F., & Vigroux, L., 2007, The Infrared Compactness-Temperature Relation for Quiescent and Starburst Galaxies, A&A, 462, 81 (C07) https://doi.org/10.1051/0004-6361:20053881
  2. Chapin, E. L., Hughes, D. H., & Aretxaga, I., 2009, The Local Far-Infrared Galaxy Colour- Luminosity Distribution: a Reference for BLAST and Herschel/SPIRE Submillimetre Surveys, MNRAS, 393, 653 https://doi.org/10.1111/j.1365-2966.2008.14242.x
  3. Chary, R. & Elbaz, D., 2001, Multicolor Optical Imaging of Infrared-Warm Seyfert Galaxies. III. Surface Photometry: Light Profile Decomposition, ApJ, 556, 562 https://doi.org/10.1086/321609
  4. Devereux, N., 1987, The Spatial Distribution of 10 Micron Luminosity in Spiral Galaxies, ApJ, 323, 91 https://doi.org/10.1086/165809
  5. Draine, B. T. & Li, A., 2007, Infrared Emission from Interstellar Dust. IV. The Silicate-Graphite-PAH Model in the Post-Spitzer Era, ApJ, 657, 810 (DL07) https://doi.org/10.1086/511055
  6. Guiderdoni, B., Hivon, E., Bouchet, F. R., & Maffei, B., 1998, Semi-Analytic Modelling of Galaxy Evolution in the IR/Submm Range, MNRAS, 295, 877 https://doi.org/10.1046/j.1365-8711.1998.01308.x
  7. Guiderdoni, B., Hivon, E., Bouchet, F. R., & Maffei, B., 1998, Semi-Analytic Modelling of Galaxy Evolution in the IR/Submm Range, MNRAS, 295, 877 https://doi.org/10.1046/j.1365-8711.1998.01308.x
  8. Hwang, H. S., et al., 2010, Evolution of Dust Temperature of Galaxies Through Cosmic Time as Seen by Herschel, MNRAS, 409, 75 https://doi.org/10.1111/j.1365-2966.2010.17645.x
  9. Kennicutt, R. C., Jr., 1998, The Global Schmidt Law in Star-forming Galaxies, ApJ, 498, 541 (K98) https://doi.org/10.1086/305588
  10. Lagache, G., Dole, H., & Puget, J. -L., 2003, Modelling Infrared Galaxy Evolution Using a Phenomenological Approach, MNRAS, 338, 555 https://doi.org/10.1046/j.1365-8711.2003.05971.x
  11. Lehnert, M. D. & Heckman, T. M., 1996, The Nature of Starburst Galaxies, ApJ, 472, 546 (LH96) https://doi.org/10.1086/178086
  12. Phillipps, S. & Disney, M., 1988, The Surface Brightness of Spiral Galaxies. IV - Correlations with Far-Infrared Emission, MNRAS, 231, 359 https://doi.org/10.1093/mnras/231.2.359
  13. Rujopakarn, W., Rieke, G. H., Eisenstein, D. J., & Juneau, S., 2011a, Morphology and Size Differences Between Local and High-redshift Luminous Infrared Galaxies, ApJ, 726, 93 https://doi.org/10.1088/0004-637X/726/2/93
  14. Rujopakarn, W., Rieke, G. H., Weiner, B. J., et al., 2011b, A Mid-Infrared Indicator for Total Infrared Luminosity and Star Formation Rate of Local and High-Redshift Galaxies, arXiv:1107.2921
  15. Soifer, B. T., Sanders, D. B., Madore, B. F., Neugebauer, G., Danielson, G. E., Elias, J. H., Lonsdale, C. J., & Rice, W. L., 1987a, The IRAS Bright Galaxy Sample. II - The Sample and Luminosity Function, ApJ, 320, 238 https://doi.org/10.1086/165536
  16. Soifer, B. T. & Neugebauer, G., 1991, The Properties of Infrared Galaxies in the Local Universe, AJ, 101, 354 https://doi.org/10.1086/115691
  17. Takeuchi, T. T., Ishii, T. T., Hirashita, H., Yoshikawa, K., Matsuhara, H., Kawara, K., & Okuda, H., 2001, Exploring Galaxy Evolution from Infrared Number Counts and Cosmic Infrared Background, PASJ, 53, 37
  18. Totani, T. & Takeuchi, T. T., 2002, A Bridge from Optical to Infrared Galaxies: Explaining Local Properties and Predicting Galaxy Counts and the Cosmic Background Radiation, ApJ, 570, 470 https://doi.org/10.1086/339628
  19. Totani, T., Takeuchi, T. T., Nagashima, M., Kobayashi, M. A. R., & Makiya, R., 2011, Infrared Spectral Energy Distribution of Galaxies in the AKARI All Sky Survey: Correlations with Galaxy Properties, and Their Physical Origin, PASJ, 63, 1181
  20. Valiante, E., Lutz, D., Sturm, E., Genzel, R., & Chapin, E. L., 2009, A Backward Evolution Model for Infrared Surveys: The Role of AGNand Color-$L_{TIR}$ Distributions, ApJ, 701, 1814 https://doi.org/10.1088/0004-637X/701/2/1814
  21. Walcher, J., Groves, B., Budavari, T., & Dale, D., 2011, Fitting the Integrated Spectral Energy Distributions of Galaxies, Ap&SS, 331, 1 https://doi.org/10.1007/s10509-010-0458-z