DOI QR코드

DOI QR Code

GALAXY SED FITTING FROM AKARI TO HERSCHEL: 0.7 < z < 4 SUB-MILLIMETER LYMAN BREAK GALAXIES IN INFRARED

  • Burgarella, D. (Laboratoire d'Astrophysique de Marseille, Technopole de Chateau-Gombert, Aix-Marseille University) ;
  • The PEP-HerMES-COSMOS team, The PEP-HerMES-COSMOS team (Laboratoire d'Astrophysique de Marseille, Technopole de Chateau-Gombert, Aix-Marseille University)
  • 투고 : 2012.07.01
  • 심사 : 2012.08.15
  • 발행 : 2012.09.16

초록

Lyman break Galaxies are galaxies selected in the rest-frame ultraviolet. But, one important and missing information for these Lyman break galaxies is the amount of dust attenuation. This is crucial to estimate the total star formation rate of this class of objects and, ultimately, the cosmic star formation density. AKARI, Spitzer and Herschel are therefore the major facilities that could provide us with this information. As part of the Herschel Multi-tiered Extragalactic Survey, we have began investigating the rest-frame far-infrared properties of a sample of more than 4,800 Lyman Break Galaxies in the GOODS-North fiels. Most LBGs are not detected individually, but we do detect a sub-sample of 12 objects at 0.7 < z <1.6 and one object at z = 2.0. The ones detected by Herschel SPIRE have redder observed NUV-U and U-R colors than the others, while the undetected ones have colors consistent with average LBGs at z > 2.5. We have analysed their UV-to-FIR spectral energy distributions using the code cigale to estimate their physical parameters. We find that LBGs detected by SPIRE are high mass, luminous infrared galaxies. They also appear to be located in a triangle-shaped region in the $A_{FUV}$ vs. $logL_{FUV}$ diagram limited by $A_{FUV}$ = 0 at the bottom and by a diagonal following the temporal evolution of the most massive galaxies from the bottom-right to the top-left of the diagram. In a second step, we move to the larger COSMOS field where we have been able to detect 80 Lyman break galaxies (out of ~ 15,600) in the far infrared. They form the largest sample of Lyman break galaxies at z > 2.5 detected in the far-infrared. We tentatively name them Submillimeter Lyman break galaxies (S-LBGs).

키워드

참고문헌

  1. Buat, V. & Xu, K., 1996, Star Formation and Dust Extinction in Disk Galaxies. Comparison between the UV Non-Ionizing and the FIR Emissions, A& A, 306, 61
  2. Burgarella, D., Buat, V., & Iglesias-P'aramo, J., 2005, Star Formation and Dust Attenuation Properties in Galaxies from a Statistical Ultraviolet-to-Far- Infrared Analysis, MNRAS, 360, 1413 https://doi.org/10.1111/j.1365-2966.2005.09131.x
  3. Burgarella, D., Le Floc'h, E., & Takeuchi, T. T., 2007, Lyman Break Galaxies at z - 1 and the Evolution of Dust Attenuation in Star-Forming Galaxies with Redshift, MNRAS, 380, 986 https://doi.org/10.1111/j.1365-2966.2007.12063.x
  4. Burgarella, D., et al., 2006, Ultraviolet-to-Far Infrared Properties of Lyman Break Galaxies and Luminous Infrared Galaxies at z -1, A&A, 450, 69 https://doi.org/10.1051/0004-6361:20054309
  5. Burgarella, D., Buat, V., Takeuchi, T. T., Wada, T., & Pearson, C., 2009, Deep 15 ${\mu}m$ AKARI Observations in the CDFS: Estimating Dust Luminosities for a MIR-Selected Sample and for Lyman Break Galaxies and the Evolution of $L_{dust}/L_{UV}$ with the Redshift, PASJ, 61, 177
  6. Burgarella, D., Heinis, S., Magdis, G., et al., 2011, HerMES: Lyman Break Galaxies Individually Detected at 0.7 < z < 2.0 in GOODS-N with Herschel/ SPIRE, ApJ, 734, L12 https://doi.org/10.1088/2041-8205/734/1/L12
  7. Bouwens, R. J., et al., 2010, Very Blue UV-Continuum Slope ? of Low Luminosity z - 7 Galaxies from WFC3/IR: Evidence for Extremely Low Metallicities?, ApJ, 708, L69 https://doi.org/10.1088/2041-8205/708/2/L69
  8. Carilli, C. L., et al., 2008, Star Formation Rates in Lyman Break Galaxies: Radio Stacking of LBGs in the COSMOS Field and the Sub-?Jy Radio Source Population, AJ, 689, 883 https://doi.org/10.1086/592319
  9. Chapman, S. C., Scott, D., Steidel, C. C., Borys, C., Halpern, M., Morris, S. L., Adelberger, K. L., Dickinson, M., Giavalisco, M., & Pettini, M., 2000, A Search for the Submillimetre Counterparts to Lyman Break Galaxies, MNRAS, 319, 318 https://doi.org/10.1088/0004-637X/722/2/1051
  10. Chapman, S. C. & Casey, C. M., 2009, Submillimetre Detection of the z = 2.83 Lyman-Break Galaxy, Westphal-MM8, and Implications for SCUBA2, MNRAS, 398, 1615 https://doi.org/10.1111/j.1365-2966.2009.14710.x
  11. Dale, D. A. & Helou, G., 2002, The Infrared Spectral Energy Distribution of Normal Star-forming Galaxies: Calibration at Far-Infrared and Submillimeter Wavelengths, ApJ, 576, 159 https://doi.org/10.1086/341632
  12. Dunlop, J. S., McLure, R. J., Robertson, B. E., Ellis, R. S., Stark, D. P., Cirasuolo, M., & de Ravel, L., 2012, A Critical Analysis of the Ultraviolet Continuum Slopes (${\beta}$) of High-Redshift Galaxies: No Evidence (Yet) for Extreme Stellar Populations at z > 6, MNRAS, 420, 901 https://doi.org/10.1111/j.1365-2966.2011.20102.x
  13. Ho, I. T., et al., 2010, Dust Obscuration in Lyman Break Galaxies at z - 4, ApJ, 722, 1051 https://doi.org/10.1088/0004-637X/722/2/1051
  14. Maraston, C., 2005, Evolutionary Population Synthesis: Models, Analysis of the Ingredients and Application to High-Z Galaxies, MNRAS, 362, 799 https://doi.org/10.1111/j.1365-2966.2005.09270.x
  15. Magdis, G., et al., 2010, On the Stellar Masses of IRAC Detected Lyman Break Galaxies at z - 3, ApJ, 714, 1740 https://doi.org/10.1088/0004-637X/714/2/1740
  16. Murakami, H., et al., 2007, The Infrared Astronomical Mission AKARI, PASJ, 59, 369 https://doi.org/10.1088/0004-637X/698/2/1273
  17. Noll, S., Burgarella, D., Giovannoli, E., Buat, V., Marcillac, D., & Munoz-Mateos, J. C., 2009, Analysis of galaxy Spectral Energy Distributions from far-UV to far-IR with CIGALE: Studying a SINGS Test Sample, A&A, 507, 1793 https://doi.org/10.1051/0004-6361/200912497
  18. Oliver, S. J., et al., 2010, Specific Star Formation and the Relation to Stellar Mass from 0 < z < 2 as Seen in the Far-Infrared at 70 and 160 ${\mu}m$, A&A, 518, L21 https://doi.org/10.1051/0004-6361/201014697
  19. Reddy, N., et al., 2010, Dust Obscuration and Metallicity at High Redshift: New Inferences from UV, H${\alpha}$, and 8 $^{1}m$ Observations of z/sim2 Starforming Galaxies, ApJ, 712, 1070 https://doi.org/10.1088/0004-637X/712/2/1070
  20. Siana, B., et al., 2009, Detection of Far-Infrared and Polycyclic Aromatic Hydrocarbon Emission from the cosmic Eye: Probing the Dust and Star Formation of Lyman Break Galaxies, ApJ, 698, 1273 https://doi.org/10.1088/0004-637X/698/2/1273
  21. Siana, B., et al., 2008, Spitzer Observations of the z = 2.73 Lensed Lyman Break Galaxy: MS 1512- cB58, ApJ, 689, 59 https://doi.org/10.1086/592682
  22. Stetson, P., 1987, DAOPHOT - A Computer Program for Crowded-Field Stellar Photometry, PASP, 99, 191 https://doi.org/10.1086/131977

피인용 문헌

  1. Star formation histories, extinction, and dust properties of strongly lensedz~ 1.5–3 star-forming galaxies from theHerschelLensing Survey vol.561, 2014, https://doi.org/10.1051/0004-6361/201322424