DOI QR코드

DOI QR Code

Thermotropic Liquid Crystalline and Photochemical Phase Transition Behavior of Octa[8-{4-(4'-cyanophenylazo)phenoxy}]octyl and Octa[8-{4-(4'-cyanophenylazo) phenoxycarbonyl}]heptanoated Disaccharides

옥타[8-{4-(4'-시아노페닐아조)펜옥시}]옥틸 그리고 옥타[8-{4-(4'-시아노페닐아조) 펜옥시카보닐}]헵타노화 이당류의 열방성 액정과 광화학적 상전이 거동

  • Kim, Hyo Gap (Center for Photofunctional Energy Materials, Dankook University) ;
  • Jung, Seung Yong (Center for Photofunctional Energy Materials, Dankook University) ;
  • Jeong, Hee Sung (Center for Photofunctional Energy Materials, Dankook University) ;
  • Ma, Yung Dae (Center for Photofunctional Energy Materials, Dankook University)
  • 김효갑 (단국대학교 광 에너지 연구센터) ;
  • 정승용 (단국대학교 광 에너지 연구센터) ;
  • 정희성 (단국대학교 광 에너지 연구센터) ;
  • 마영대 (단국대학교 광 에너지 연구센터)
  • Received : 2012.06.27
  • Accepted : 2012.08.13
  • Published : 2012.11.25

Abstract

Octa[8-{4-(4'-cyanophenylazo)phenoxy}]octyl and octa[8-{4-(4'-cyanophenylazo)phenoxycarbonyl}]heptanoated disaccharide derivatives were synthesized by reacting cellobiose, maltose, and lactose with 1-{4-(4'-cyanophenylazo) phenoxy}octylbromide or 1-{4-(4'-cyanophenylazo)phenoxycarbonyl}]heptanoyl chloride, and their thermotropic liquid crystalline and photochemical phase transition behavior were investigated. All the {(cyanophenylazo)phenoxy} octyl disaccharide ethers (CADETs) formed monotropic nematic (N) phases, whereas all the {(cyanophenylazo) phenoxycarbonyl}heptanoated disaccharide esters (CADESs) exhibited enantiotropic N phases. Compared with CADETs, CADESs showed higher isotropic (I)-to-N phase transition temperatures. Photoirradiation of the disaccharide derivatives in a glass cell or in a cell with a rubbed polyimide (PI) alignment layer at a N phase resulted in disappearance of the N phase due to trans-cis photoisomerization of azobenzene, and the initial N phase was recovered when the irradiated sample was kept in the dark because of cis-trans thermal isomerization and reorientation of trans-azobenzenes. The rates of the photochemical N-I and the thermal I-N phase transition of disaccharide derivatives in a cell with a rubbed PI alignment layer were faster than those in a glass cell, and were significantly different from those observed for the monomesogenic compounds containing cyanoazobenzene and the 4-{4'-(cyanophenylazo)phenoxy}octyl glucose and cellulose ethers. The results were discussed in terms of difference in cooperative motion of azobenzene groups due to the flexibility of the main chain, the number of mesogenic units per repeating units, and the distance between the azobenzene groups.

셀로비오스, 말토오스 그리고 락토오스를 1-{4-(4'-시아노페닐아조)펜옥시}옥틸브롬 혹은 1-{4-(4'-시아노페닐아조)펜옥시카보닐}헵타노일 클로라이드와 반응시켜 옥타[8-{4-(4'-시아노페닐아조)펜옥시}]옥틸 그리고 옥타[8-{4-(4'-시아노페닐아조)펜옥시카보닐}]헵타노화 이당류 유도체들을 합성함과 동시에 이들의 열방성 액정과 광화학적 상전이 거동을 검토하였다. 모든 {(시아노페닐아조)펜옥시}옥틸 이당류 에테르들(CADETs)은 단방성 네마틱(N) 상들을 형성하는 반면 모든 {(시아노페닐아조)펜옥시카보닐}헵타노화 이당류 에스터들(CADESs)은 양방성 N 상들을 형성하였다. CADETs에 비해, CADESs는 높은 액체(I) 상에서 N 상으로의 전이 온도들을 나타냈다. 유리 셀 혹은 러빙된 폴리이미드(PI) 배향막을 지닌 셀 중에서 N 상을 형성하고 있는 이당류 유도체에 광을 조사시킬 경우, 아조벤젠기의 trans-cis 이성화에 의해 N 상은 I 상으로 변하였다. 한편, 광 조사시켜 얻은 시료를 광을 차단한 상태로 방치할 경우 열에 의한 cis-trans 이성화와 trans 아조벤젠기들의 재배열로 인하여 I 상은 최초의 N 상으로 변하였다. 유리 셀의 경우에 비해 러빙된 PI 배향막을 지닌 셀의 경우가 이당류 유도체들의 광화학적 N-I 그리고 열적 I-N 상전이 속도들은 빠르며 시아노아조벤젠기를 지닌 monomesogenic 화합물들 그리고 4-{4'-(시아노페닐아조)펜옥시}옥틸 글루코오스 그리고 셀룰로오스 에테르들에 대해 관찰되는 결과들에 비해 현저히 달랐다. 이러한 결과를 주사슬의 유연성, 반복단위당에 도입된 메소겐기들의 수 그리고 아조벤젠기들간의 거리에 기인한 아조벤젠기들의 협동효과의 차이의 견지에서 검토하였다.

Keywords

Acknowledgement

Supported by : 경기도지역협력센터

References

  1. J. W. Goodby, Liq. Cryst., 24, 35 (1998).
  2. F. Dumolin, D. Lafont, P. Boullanger, G. Makenzie, G. H. Mehl, and J. W. Goodby, J. Am. Chem. Soc., 124, 13737 (2002). https://doi.org/10.1021/ja020396+
  3. T. Fukuda, Y. Tsujii, and T. Miyamoto, Macromol. Symp., 99, 257 (1995). https://doi.org/10.1002/masy.19950990127
  4. A. N. Cammidge and R. J. Bushby, "Synthesis and Structural Features", in Handbook of Liquid Crystals, D. Demus, J. Goodby, G. W. Gray, H.-W. Spiess, and V. Vill, Editors, Wiley-VCH, Weinheim-New York, Vol 2B, Chap VII, p 693 (1998).
  5. J. W. Goodby, I. M. Saez, S. J. Cowling, V. Gortz, M. Draper, A. W. Hall, S. Sia, G. Cosquer, S.-E. Lee, and E. P. Raynes, Angew. Chem. Int. Ed., 47, 2754 (2008). https://doi.org/10.1002/anie.200701111
  6. T. Donaldson, H. Staesche, Z. B. Lu, P. A. Henderson, M. F. Achard, and C. T. Imrie, Liq. Cryst., 37, 1097 (2010). https://doi.org/10.1080/02678292.2010.494412
  7. S.-Y. Jeong and Y.-D. Ma, Polymer(Korea), 31, 58 (2007).
  8. S.-Y. Jeong and Y.-D. Ma, J. Korean Ind. Eng. Chem., 18, 475 (2007).
  9. J.-H. Kim and Y.-D. Ma, J. Korean Ind. Eng. Chem., 15, 113 (2004).
  10. S.-Y. Jeong and Y.-D. Ma, Polymer(Korea), 32, 230 (2008).
  11. A. Takada, T. Fukuda, T. Miyamoto, and J. Watanabe, Cell. Chem. Technol., 24, 693 (1990).
  12. S.-Y. Jeong, I.-S. Kim, and Y.-D. Ma, J. Korean Ind. Eng. Chem., 20, 603 (2009).
  13. J. W. Goodby, Mol. Cryst. Liq. Cryst., 110, 205 (1984). https://doi.org/10.1080/00268948408074506
  14. N. Laurent, D. Lafont, F. Dumoulin, P. Boullanger, G. Mackenzie, P. H. J. Kouwer, and J. W. Goodby, J. Am. Chem. Soc., 125, 15499 (2003). https://doi.org/10.1021/ja037347x
  15. S. M. Harwood, K. J. Toyne, and J. W. Goodby, Liq. Cryst., 27, 443 (2000). https://doi.org/10.1080/026782900202624
  16. C. V. Yelamaggad, G. Shanker, U. S. Hiremath, and S. Krishna Prasad, J. Mater. Chem., 18, 2927 (2008). https://doi.org/10.1039/b804579h
  17. A. Emoto, E. Uchida, and T. Fukuda, Polymer, 4, 150 (2012). https://doi.org/10.3390/polym4010150
  18. Y. Yu and T. Ikeda, Adv. Mater., 23, 2149 (2011). https://doi.org/10.1002/adma.201100131
  19. N. Tamaoki and T. Kamei, J. Photochem. Photobiol. C: Photochem. Rev., 11, 47, (2010). https://doi.org/10.1016/j.jphotochemrev.2010.09.001
  20. V. Shibaev, A. Borovsky, and N. Boike, Prog. Polym. Sci., 28, 729 (2003). https://doi.org/10.1016/S0079-6700(02)00086-2
  21. S. Kurihara, K. Iwamoto, and T. Nonaka, J. Chem. Soc. Chem. Commun., 2195 (1995).
  22. S. Kurihara, K. Iwamoto, and T. Nonaka, Polymer, 39, 3565 (1998). https://doi.org/10.1016/S0032-3861(97)10268-3
  23. S.-Y. Jeong, H.-M. Son, and Y.-D. Ma, Polymer(Korea), 34, 116 (2010).
  24. S.-Y. Jeong, J.-Y. Lee, and Y.-D. Ma, Polymer(Korea), 33, 297 (2009).
  25. S.-Y. Jeong and Y.-D. Ma, J. Korean Ind. Eng. Chem., 19, 504 (2008).
  26. J.-H. Sung, S. Hirano, O. Tsutsumi, A. Kanazawa, T. Shiono, and T. Ikeda, Chem. Mater., 14, 385 (2002). https://doi.org/10.1021/cm010729m
  27. S.-Y. Jeong and Y.-D. Ma, Chemical Materials(Dankook University), 4, 19 (2007).
  28. G. W. Gray, "Liquid Crystals and Molecular Structure-Nematics and Cholesterics", in The Molecular Physics of Liquid Crystals, G. R. Luckhurst and G. W. Gray, Editors, Academic Press Inc., London, Chap 1, p 1 (1979).
  29. P. J. Collings and M. Hird, "Calamitic Liquid Crystals-Nematic and Smectic Mesophases", in Introduction to Liquid Crystals, G. W. Gray, J. W. Goodby, and A. Fukuda, Editors, Taylor and Francis Ltd., London, Chap 3, p 43 (1997).
  30. S.-Y. Jeong, J.-H. Jeong, Y.-D. Ma, and Y. Tsujii, Polymer (Korea), 25, 279 (2001).
  31. S.-Y. Jeong and Y.-D. Ma, Polymer(Korea), 31, 37 (2007).
  32. S.-Y. Jeong and Y.-D. Ma, Polymer(Korea), 30, 338 (2006).
  33. S. W. Cha, J.-I. Jin, D.-C. Kim, and W.-C. Zin, Macromolecules, 34, 5342 (2001). https://doi.org/10.1021/ma001861v
  34. L. Brehmer, "Ultrathin Films for Sensors and Molecular Electronics", in Polymer Sensors and Actuators, Y. Osada and D. E. DeRossi, Editors, Springer-Verlag, Berlin, Chap 2, p 15 (2000).
  35. K. G. Yager and C. J. Barrett, "Azobenzene Polymers for Photonic Applications", in Smart Light-Responsive Materials: Azobenzene-Containing Polymers and Liquid Crystals, Y. Zhao and T. Ikeda, Editors, John Wiley & Son, Inc., Chap 1, p 1 (2009).
  36. J.-H. Liu and C.-D. Hsieh, J. Appl. Polym. Sci., 99, 2443 (2006). https://doi.org/10.1002/app.22776
  37. Y. Yu, Q. Zhang, A. Kanazawa, T. Shiono, T. Ikeda, and Y. Nagase, Macromolecules, 32, 3951 (1999). https://doi.org/10.1021/ma990197j
  38. X. Tong, L. Cui, and Y. Zhao, Macromolecules, 37, 3101 (2004). https://doi.org/10.1021/ma049744d
  39. T. Ikeda, S. Horiuchi, D. B. Karanjit, S. Kurihara, and S. Tazuke, Macromolecules, 23, 42 (1990). https://doi.org/10.1021/ma00203a009
  40. S. Ivanov, I. Yakovlev, S. Kostromin, V. Shibaev, L. Lasker, J. Stumpe, and D. Kreysig, Macromol. Chem. Rapid. Commun., 12, 709 (1991). https://doi.org/10.1002/marc.1991.030121210
  41. Y. Wu, Y. Demachi, O. Tsutsumi, A. Kanazawa, T. Shiono, and T. Ikeda, Macromolecules, 31, 349 (1998). https://doi.org/10.1021/ma970943p
  42. M. Hasegawa, "Rubbing Technologies: Mechanisms and Applications", in Alignment Technologies and Applications of Liquid Crystal Devices, K. Takatoh, M. Hasegawa, M. Koden, N. Itoh, R. Hasegawa, and M. Sakamoto, Editors, Tayler & Francis, London and New York, Chap 2, p 7 (2005).
  43. M. Lee, M. Y. Shin, S. H. Kim, and K. Song, Polymer(Korea), 35, 493 (2011).
  44. Z. Sun, A. Qin, Z. Chen, and Y. Wang, Liq. Cryst., 37, 345 (2010). https://doi.org/10.1080/02678290903564437
  45. A. Natanshon, P. Rochon, X. Meng, C. Barrett, T. Buffeteau, S. Bonenfant, and M. Pezolet, Macromolecules, 31, 1155 (1998). https://doi.org/10.1021/ma9712716
  46. Y. Yu, Y. Demachi, O. Tsutsumi, A. Kanazawa, T. Shiono, and T. Ikeda, Macromolecules, 31, 1104 (1998). https://doi.org/10.1021/ma971035v
  47. Y. Wu, J.-I. Mamiya, A. Kanazawa, T. Shiono, T. Ikeda, and Q. Zhang, Macromolecules, 32, 8829 (1999). https://doi.org/10.1021/ma9903052
  48. T. Fisher, L. Lasker, S. Czapla, J. Rubner, and J. Stumpe, Mol. Cryst. Liq. Cryst., 298, 213 (1997). https://doi.org/10.1080/10587259708036163
  49. O. Tsutsumi, T. Kitsunai, A. Kanazawa, T. Shiono, and T. Ikeda, Macromolecules, 31, 355 (1998). https://doi.org/10.1021/ma971344l
  50. T. Sasaki, T. Ikeda, and K. Ichimura, Macromolecules, 26, 151 (1993). https://doi.org/10.1021/ma00053a023
  51. A. Bobrovsky, N. Boiko, and V. P. Shibaev, J. Mater. Chem., 10, 1075 (2000). https://doi.org/10.1039/a909279j
  52. A. Yu. Bobrovsky, N. I. Boiko, V. P. Shibaev, and J. Springer, Liq. Cryst., 28, 919 (2001). https://doi.org/10.1080/02678290010026296
  53. S. L. Shin, L. H. Gan, X. Hu, K. C. Tam, and Y. Y. Gan, Macromolecules, 38, 3943 (2005). https://doi.org/10.1021/ma050097f
  54. S. K. Kumar, J.-P. Hong, C.-K. Lim, and S.-Y. Park, Macromolecules, 39, 3217 (2006). https://doi.org/10.1021/ma060169i
  55. A. Yu, A. A. Pakhonov, X.-M. Zhu, N. I. Boiko, V. P. Shibaev, and J. Stumpe, J. Phys. Chem. B, 106, 540 (2002). https://doi.org/10.1021/jp0125247
  56. S. Yang, M. M. Jacob, L. Li, A. L. Cholli, J. Kumar, and S. K. Tripathy, Macromolecules, 34, 9193 (2001). https://doi.org/10.1021/ma010931a
  57. O. Tsusumi, T. Shiono, T. Ikeda, and G. Galli, J. Phys. Chem. B, 101, 1332 (1997). https://doi.org/10.1021/jp961565d