DOI QR코드

DOI QR Code

Characterization of Thermal Degradation of Polymide 66 Composite: Relationship between Lifetime Prediction and Activation Energy

폴리아미드 66 복합소재의 열 열화 특성: 수명 예측과 활성화 에너지의 상관관계

  • Received : 2012.04.26
  • Accepted : 2012.06.12
  • Published : 2012.11.25

Abstract

Thermal degradation for glass fiber-reinforced polyamide 66 composite (PA 66) with respect of thermal exposure time has been investigated using optical microscopy, scanning electron microscopy and Fourier transform infrared spectroscopy. As the thermal exposure time was prolonged, a slight increase in tensile strength for only initial stage and afterward, a proportional decrease of tensile strength was observed. These results can be explained by the increase of crystallinity, followed by the increase of crosslinking density, chain scission and the decrease in chain mobility, due to thermal oxidation with the exposure time. Fourier transform infrared spectroscopy results showed the increase of ketone peak and silica peak on the surface of thermally exposed PA 66. In addition, the thermal decomposition kinetics of PA 66 was analyzed using thermogravimetric analysis at three different heating rates. The relationship between activation energy and lifetime-prediction of PA 66 was investigated by several methodologies, such as statistical tool, UL 746B, Ozawa and Kissinger. The activation energy determined by thermogravimetric analysis had a relatively large value compared with that from the accelerated test. This may result in over-estimating the lifetime of PA 66. In this study, a master curve of exponential fitting has been developed to extrapolate the activation energy at various service temperatures.

광학현미경분석, 주사전자현미경분석 및 적외선분광분석을 이용하여, 열화시간 경과에 따른 유리섬유가 보강된 폴리아미드 66 복합소재의 열 열화 특성을 조사하였다. 열화시간이 증가함에 따라, 인장강도는 열화 초기 약간의 증가 후 점진적으로 감소하는 경향을 보였다. 이러한 결과는 열 열화가 진행됨에 따라 결정화도의 증가, 가교밀도의 증가, 사슬 전단 및 사슬 운동성의 감소 등에 기인한 것으로 판단된다. 적외선분광분석을 통하여, 폴리아미드 66 복합소재 표면상에 열화에 기인한 케톤 피크와 규소 피크의 증가를 관찰하엿다. 또한 세 가지 승온속에서 측정된 열중량분석 결과를 이용하여 폴리아미드 66 복합소재으 열 분해 반응동역학을 분석하였다. 통계학적 기법, UL 746B, Ozawa 및 Kissinger 등 여러 방법을 통해 계산된, 폴리아미드 66 복합소재의 활성화 에너지와 수명 예측간의 상관관계를 조사하였다. 열중량분석으로부터 계산된 활성화 에너지는 가속시험으로 구한 값보다 상대적으로 큰 값을 나타내며, 이는 폴리아미드 66 소재으 수명을 과대 평가하는 결과를 초래하였다. 본 연구에서는 다양한 사용 온도에서의 활성화 에너지를 외삽하여 계산 가능한 지수 패턴의 표준곡선을 개발하였다.

Keywords

Acknowledgement

Supported by : 환경부

References

  1. B. J. Holland and J. N. Hay, Polym. Int., 49, 943 (2000). https://doi.org/10.1002/1097-0126(200009)49:9<943::AID-PI400>3.0.CO;2-5
  2. W. Dong and P. Gijsman, Polym. Degrad. Stab., 92, 1054 (2010).
  3. D. Forsström and B. Terselius, Polym. Degrad. Stab., 67, 69 (2000). https://doi.org/10.1016/S0141-3910(99)00122-6
  4. P. A. Eriksson and A. C. Albertsson, Polym. Eng. Sci., 38, 348 (1998). https://doi.org/10.1002/pen.10196
  5. P. A. Eriksson, P. Boydell, K. Eriksson, J. A. Manson, and C. Albertsson, J. Appl. Polym. Sci., 65, 1619 (1997). https://doi.org/10.1002/(SICI)1097-4628(19970822)65:8<1619::AID-APP18>3.0.CO;2-Q
  6. Y. Shu, L. Ye, and T. Yang, J. Appl. Polym. Sci., 110, 945 (2008). https://doi.org/10.1002/app.28647
  7. P. Gijsman and F. Verdun, Polym. Degrad. Stab., 74, 533 (2001). https://doi.org/10.1016/S0141-3910(01)00190-2
  8. O. Chiantore, S. Tripodi, C. Sarmoria, and E. Valles, Polymer, 42, 3981 (2001). https://doi.org/10.1016/S0032-3861(00)00736-9
  9. M. Celina, J. Wise, D. K. Ottesen, K. T. Gillen, and R. L. Clough, Polym. Degrad. Stab., 68, 171 (2000). https://doi.org/10.1016/S0141-3910(99)00183-4
  10. L. Rongfu and H. Xingzhou, Polym. Degrad. Stab., 62, 523 (1998). https://doi.org/10.1016/S0141-3910(98)00037-8
  11. V. N. Badoni, D. Srivastava, and G. N. Mathur, J. Polym. Mater., 13, 279 (1996).
  12. J. R. Gonzalez-Velasco, J. A. Gonzalez-Marcos, J. A. Delgado, C. Gonzalez-Ortiz de Elguea, and J. I. Gutierrez-Ortiz, Chem. Eng. Sci., 51, 1113 (1996). https://doi.org/10.1016/S0009-2509(96)80010-8
  13. A. A. Hamza, M. M. El-Tonsy, I. M. Fouda, and A. M. El-Said, J. Appl. Polym. Sci., 57, 265 (1995). https://doi.org/10.1002/app.1995.070570303
  14. P. Gijsman, D. Tummers, and K. Janssen, Polym. Degrad. Stab., 49, 121 (1995). https://doi.org/10.1016/0141-3910(95)00066-U
  15. J.-I. Weon, Y.-K. Chung, S.-M. Shin, and K.-Y. Choi, Polymer (Korea), 32, 440 (2008).
  16. J.-I. Weon and K.-Y. Choi, Polymer(Korea), 33, 446 (2009).
  17. W. Ahan and E. A. Elsayed, Qual. Reliab. Engng. Int., 21, 701 (2005). https://doi.org/10.1002/qre.709
  18. E. Gouno, Qual. Reliab. Engng. Int., 17, 11 (2001). https://doi.org/10.1002/qre.362
  19. K. Devarajan and N. Ebrahimi, Naval Res. Logist., 45, 629, (1998). https://doi.org/10.1002/(SICI)1520-6750(199809)45:6<629::AID-NAV6>3.0.CO;2-4
  20. T. Trankner, M. Hedenqvist, and U. Gedde, Polym. Eng. Sci., 34, 1581 (1994). https://doi.org/10.1002/pen.760342102
  21. E. M. Hoàng and D. Lowe, Polym. Degrad. Stab., 93, 1496 (2008). https://doi.org/10.1016/j.polymdegradstab.2008.05.008
  22. J. Y. Lee, M. J. Shim, and S. W. Kim, J. Appl. Polym. Sci., 81, 479 (2001). https://doi.org/10.1002/app.1460
  23. H. Wang, X. Tao, and E. Newton, Polym. Int., 53, 20 (2004). https://doi.org/10.1002/pi.1279
  24. "Cylinder Head-Cover Plastics for Automobiles", RS M 0013, 2004.
  25. J.-I. Weon, S.-M. Shin, and K.-Y. Choi, J. Korean Eng. Ind. Chem., 20, 511 (2009).
  26. W. D. Callister, Materials Science and Engineering, 3rd edition, John Wiley & Sons, Inc., 1994.
  27. N.G. McCrum, C. P. Buckley, and C. B. Bucknall, Principles of Polymer Engineering, 2nd edition, Oxford University Press Inc., New York, 1999.
  28. P. N. Thanki and R. P. Singh, Polymer, 39, 6363(1998). https://doi.org/10.1016/S0032-3861(97)10390-1
  29. H. R. Allcock, F. W. Lampe, and J. E. Mark, Contemporary Polymer Chemistry, 3rd edition, Pearson Education Inc., 2004.
  30. D. G. Kim, S. Y. Park, and C. R. Park, Polymer(Korea), 24, 58 (2000).
  31. "Polymeric Materials - Long Term Property Evaluations", UL 746B, 1996.

Cited by

  1. MEG Effects on Hydrolysis of Polyamide 66/Glass Fiber Composites and Mechanical Property Changes vol.24, pp.4, 2019, https://doi.org/10.3390/molecules24040755
  2. 저분자 아미드계 활제 합성을 통한 폴리아미드6/유리섬유 복합소재의 유동성 향상 연구 vol.42, pp.4, 2012, https://doi.org/10.7317/pk.2018.42.4.568
  3. 축열조 캡슐 고장원인 분석과 수명시험 모드 결정에 관한 연구 vol.18, pp.3, 2012, https://doi.org/10.33162/jar.2018.09.18.3.260
  4. TGA를 이용한 Chlorinated Poly Vinyl Chloride(CPVC)의 활성화 에너지 평가 vol.33, pp.1, 2012, https://doi.org/10.7731/kifse.2019.33.1.001
  5. Role of graphene nanoplatelets and carbon fiber on mechanical properties of PA66/thermoplastic copolyester elastomer composites vol.7, pp.1, 2012, https://doi.org/10.1088/2053-1591/ab648d
  6. Stress‐life prediction of 25°C polypropylene materials based on calibration of Zhurkov fatigue life model vol.43, pp.8, 2012, https://doi.org/10.1111/ffe.13231