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abstract 
This paper develops a recursive multinomial probit model and describes its estimation 
method. The recursive multinomial probit model is an extension of a recursive bivariate pro-
bit model. The main difference between the two models is that a single decision among two 
or more alternatives can be considered in each choice equation in the proposed model. The 
recursive multinomial probit model is developed based on a standard framework of the mul-
tinomial probit model and a Bayesian approach with a Gibbs sampling is adopted for the es-
timation. The simulation exercise with artificial data sets is showed that the model performed 
well. Since the recursive multinomial probit model can be applied to analyze the causal rela-
tionship between discrete dependent variables with more than two outcomes, the model can 
play an important role in extending the methodology of the causal relationship analysis in 
innovation research.
Classification codes: C11, C35

keywords: Multinomial probit, Endogenous dummy, Bayesian approach

1. Introduction

In working with empirical data, one sometimes face the joint problems of discreteness of dependent 
variables and simultaneity (Blundell & Smith, 1989; Li, 1998). For example, the dependent variables 
may be binary and some of these binary dependent variables may be endogenous regressors in other 
decisions. The literature on a simultaneous equation model with limited dependent variables and en-
dogenous dummy variables was pioneered by Amemiya (1978) and Heckman (1978) and have been 
used to model the situation in which the joint problems of limited dependent variables and simulta-
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neity/endogeneity should be considered (Angrist, 2001; Blundell & Smith, 1989; Greene, 1998; Li, 
1998; Monfardini & Radice, 2008; Wilde, 2000; Ye, Pendyala, & Gottardi, 2007).

A bivariate probit with endogenous dummy (also called a recursive bivariate probit model) is a 
two-equation probit model in which the disturbances are correlated and the binary dependent vari-
able of the first equation is an endogenous regressor in the second equation for binary choice (Wilde, 
2000). This model widely used to address the concurrent problems of discreteness of dependent vari-
ables and simultaneity (Greene, 1998; Monfardini & Radice, 2008; Wilde, 2000; Ye et al., 2007). 
However, the model has an obvious limitation in that only a binary choice (i.e., the choice between 
two alternatives) can be considered in each equation. Yet we often encounter data comprised of si-
multaneous discrete choices made from more than two options.

This study addresses the limitation of a recursive bivariate probit model. For this purpose, this 
study suggests a recursive multinomial probit model that is a multinomial probit model with an en-
dogenous dummy and the method for its estimation. The model is an extension of a recursive probit 
model and a single decision among two or more alternatives can be considered in each choice equa-
tion for the model. The recursive multinomial probit model is developed based on a standard frame-
work of the multinomial probit model, and a Bayesian approach with Gibbs sampling is adopted for 
the estimation. This study conducts a simulation exercise with artificial data sets to show the perfor-
mance of the model. From the simulation study, we can see the difference between a recursive bivari-
ate probit model and a recursive multinomial probit model.

The recursive bivariate probit model is commonly used in economic applications to analyze the 
causal relationship between binary dependent variables. Therefore, from an empirical perspective, the 
recursive multinomial probit model can be applied to any research that uses a recursive probit model 
because the recursive multinomial probit model makes it possible to consider a single choice from 
more than two alternatives. To see the possible applicability of a recursive multinomial probit model 
in various fields including innovation research, this study shows example how previous studies using 
a recursive probit model can be extended by using a recursive multinomial probit model.

The rest of the paper is organized as follows. Section 2 discusses the limitation of previous model. 
Section 3 presents a recursive multinomial probit model and method of estimation. The simulation 
study that illustrates the performance of the model with artificial data sets is presented in Section 4. 
Possible applications of the model for innovation study are discussed in Section 5. The last section 
presents the conclusion and summary. 

2. Recursive probit model and its limitation

A bivariate probit with endogenous dummy or recursive probit model is a two equation probit model 
in which the disturbances are correlated and the binary dependent variable of the first equation is an 
endogenous regressor in the second equation for a binary choice (Wilde, 2000). The model allows 
the analysis of one-way causal relationships between two choice behaviors (Ye et al., 2007). The gen-
eral form of the model is as follows:
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In the above equation, y*1i and y*2i are latent variables for which only the dichotomous variables y1i 

and y2i can be observed. x1i and x2i are vectors of exogenous variables, β1, β2 , and δ are parameters. The 
error terms (u1i, u2i)  is a vector of bivariate normally distributed disturbances with zero mean, unit 
variance and correlation coefficient, ρ , independently across observations. 

The correlation coefficient (ρ), which can be interpreted as the correlations between the unobserv-
able explanatory variables of the two equations, is related to the exogeneity of  y1i. When, ρ=0 , y1i is 
exogenous for the second equation, then it is sufficient for parameter estimation to fit two univariate 
probit equations separately. Under ρ≠0 (i.e.,y1i is endogenous for the second equation) a simultane-
ous estimation is needed to form consistent estimates of the parameters of the second equation. In 
this case, parameter estimation can be accomplished using readily available software dealing with an 
estimation of the common bivariate probit model because the likelihood functions of the recursive 
bivariate probit model and the common bivariate probit model are virtually identical (Greene, 1998; 
Ye et al., 2007).

The recursive bivariate probit model is commonly used in economic applications where there are 
good a priori reasons to consider a dependent binary variable as simultaneously determined with a 
dichotomous regressor (Monfardini & Radice, 2008). The model has been applied in various fields 
to analyze the causal relationship between binary dependent variables. For example, between: mode 
choice and the complexity of trip chaining patterns (Ye et al., 2007), women’s studies program and 
gender economics courses (Greene, 1998), graduate education and job success (Bowman & Mehay, 
1999), entry mode choice and FDI survival (Shaver, 1998), decision to investment and firm’s innova-
tion activity (Skuras, Tsegenidi, & Tsekouras, 2008), financial constraint and firm’s innovation activ-
ity (Savignac, 2008).

Although a recursive probit model is commonly used in many economic applications, it has an 
obvious limitation in that only binary outcome (i.e., the choice between two alternatives or op-
tions) can be considered for each equation. Yet we often encounter data comprising simultaneous 
discrete choices made from among more than two options. Unlike a recursive probit model situation, 
a choice may be made from more than two options in first choice behavior, and the result of first 
choice may affect a choice from more than two options in second choice behavior.

This paper suggests a new recursive multinomial probit model (a multinomial probit model with 
an endogenous dummy) and the method of its estimation. The model is an extension of a recursive 
probit model and belongs to the general class of simultaneous equation models with discrete endog-
enous variables. In each choice equation in the model, a single decision among two or more alterna-
tives can be considered. The model directly deals with simultaneity and endogeneity problems. The 
following section describes the recursive multinomial probit model and suggests the method for its 
estimation in detail.

3. The Model and the Method of Estimation

Suppose that a decision maker (that is, individual, group, firm, organization, or any other decision-
making unit)  i(=1,...,N)has two choices jointly, and the result of the first choice affects the second 
choice. Let Uij be the latent-variable which are related to a decision maker i ’s single choice j from 
among J alternatives (i.e., the first choice) andVil be the latent-variable which are related to a decision 
maker i ’s single choice l from among L alternatives (the second choice).

To solve the identification problem in the multinomial probit model (that any location shift will 
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not change the observed choices), this study choose alternatives J and L as the base choices in each 
choice, respectively. Then, each choice can be represented by a standard latent variable interpretation 
of the multinomial probit model as follows: 

	  

where Ui
* is a( J-1)x1 vector with  U*

ij=Uij-UiJ ;  Zi is a ( J-1)xk  matrix of regressor variables; vi  
is a(J-1)x1 vector of regression error; Vi

*  is a (L-1)x1 vector with Vil
*= Vil  - ViL; Ei  is a(L-1)xq ma-

trix of regressor variables; ρi is a(L-1)x1 vector of regression error; Ri=[(di1,...,diJ-1)⊗I ]is a (L-1)xm 
matrix; and dij is a dummy defined as 1 if decision maker i selects j alternative in first choice, and zero 
otherwise that captures the systematic effects of the first choices on the second choices. The observed 
choices made by decision maker i are expressed by the indicator variables  yi  and hi .

To consider two discrete choices jointly, this study combine equations 1 and 2 as follows:
	
 

where
 

The potential correlations between the unobserved components of two discrete choices can be re-
flected by the partition (∑vρ) of the covariance matrix (∑), and simultaneity between the two choices 
and endogenous dummy problems are captured by the covariance term ∑vρ.

The model specified above still has an additional identification problem in that any scale shift will 
not change the observed choice in each multinomial probit. To deal with this identification problem, 
this study make use of the ideas of Nobile (2000) and McCulloch and Rossi (1994). Nobile suggests 
a way of imposing the normalization constraint in a Bayesian multinomial probit model using direct 
simulation from the Wishart and inverted Wishart distributions (conditional on one of the elements 
being on the diagonal). Following Nobile, we can impose identification in the second choice equa-
tion by restricting one of the diagonal elements of  ∑ρρ (also, ∑) to unity. However, the identifica-
tion problem still remains in the first choice equation. To impose identification in the first choice 
equation, this study follow McCulloch and Rossi (1994). That is, we compute the full posterior over   
β and ∑ , and report the marginal posterior distribution of the identified parameters, and  by              	
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							            is the square root of the (1,1) 
 

element of ∑ (also, ∑vv  in the first choice). By applying the ideas of Nobile (2000) and McCulloch 
and Rossi (1994) in succession, the model can be fully identified.

In model specification, this study selects the following priors;
 
 

where the indicator function on the Wishart distribution serves to enforce the identification restric-
tion that the ( J+L-2, J+L-2 ) element of ∑ is unity (Koop, Poirier, & Tobias, 2007).

Then the full Gibbs sampler is as follows;
  

Note that all posterior distributions are conditional on both  ti =   and  Xi .
The first conditional distribution of β is normal. 
	  								      
									         (1)

where 

The second conditional distribution of  ∑-1is Wishart.
 								      
									         (2)

This study uses Nobile’s (2000) algorithm to generate draws from this Wishart.
The third conditional distribution of  Wi

*      is multivariate truncated normal.
	  								      
									         (3)

where denotes multivariate normal distribution with mean Xi β and covariance 
matrix  that is truncated to the region Ri. Ri is dependent on ti . This study uses Geweke’s (1991) 
procedure for drawing from this multivariate truncated normal distribution.

4. Simulation study

This section illustrates the performance of the model with artificial data sets. The purpose of simula-
tion exercise is to see how the inference method developed in the previous section performs when the 
model is correctly specified and to investigate the existence of an estimation bias when the endogene-
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ity of dummy variable is ignored. To do that, this study compared the two models using generated 
data: (1) a full model that is correctly specified and (2) a restricted model that is incorrectly specified, 
accordingly has an endogeneity problem. This kind of simulation exercise that compares two models 
(correctly specified model and incorrectly specified model) is a general methodology in a Bayesian 
approach to the investigation of the performance of a newly proposed model (Chib & Jacobi, 2007; 
McCulloch & Rossi, 1994; Munkin & Trivedi, 2003).

The data sets are generated from a recursive multinomial probit model with two joint discrete 
choice behaviors (the first choice: three alternatives and the second choice: three alternatives) as fol-
lows:

1,000 observations (i=1,...,1000) are generated. A detail generating process is shown in Table 1.

Table 1   Generating Process of Artificial Data for Recursive Multinomial Probit Model

1. Model structure

2. Generate explanatory variables and error terms

3. Input the true values

4. Generate  yi , d1  and  d2  according to the following rule:

5. Generate  hi
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For prior, this study uses the following prior hyperparameter values: b=0, A=400I , v=7, =vI 
. For the estimation, this study generates 11,000 draws from Gibbs sampling, discarding the first 
1,000 draws as burn-in iterations. Restricted model estimation is done through two stages: (1) the 
first discrete choice equation is estimated by the MNP model and (2) the second discrete choice 
equation is also estimated by the MNP model in which endogenous dummies from the results of first 
choice are assumed to be exogenous. The estimation results of the full model and restricted model are 
given in Table 2.

We compare the results between the full model and restricted model using the root mean square 
deviation (RMSD) which is a measure of the differences between values estimated by a model and 
the values entered in the model. The posterior means of identified parameters in the full model are 
close to the true values used to generate the artificial data. RMSD between values estimated by the 
full model and the values actually used in the artificial data is calculated for the second choice equa-
tion; the value of RMSD is 0.0892. When the endogeneity of dummy variable is ignored, it results 
in an estimation bias. The estimates of parameters (δ21, δ12, δ22 ) in the restricted model (second 
choice equation estimated by MNP model) that are parameters for the endogenous dummies in the 
second choice equation are not close to the true values. The RMSD between values estimated by the 
restricted model and the true values is 0.1490 for the second choice equation that is almost two times 
bigger than that of full model. This means the differences between values estimated by restricted 
model and the true values are significant and suggest potentially serious consequence in ignoring the 
endogenous dummy problem. Of note is that the absolute value of difference between the estimated 
parameters in the restricted model and the true values is somewhat small. This may be because the 
relative influence of endogenous dummies on choice is not large enough to change the results of the 
second choice equation. The estimation method developed in the previous section performs well and 
the estimated results are consistent with the true values. 

			                                                           Full model		                                                       Restricted model

			                                                         Posterior moments		                                                    Posterior moments

	 Parameter	 True value	 Mean	 Std. dev.	 Mean	 Std. dev.

First choice equation				                                                           MNP 

		  -0.5	 -0.5089 	 0.0484 	 -0.5229 	 0.0451 

		  1.5	 1.5058 	 0.0965 	 1.4608 	 0.0995 

Second choice equation				                                                          MNP

		  0.5	 0.5593 	 0.0591 	 0.5558 	 0.0542 

		  -0.5	 -0.5147 	 0.0539 	 -0.5374 	 0.0568 

		  -1	 -1.1626 	 0.2599 	 -1.0139 	 0.2393 

		  1	 1.0664 	 0.1053 	 1.2763 	 0.1021 

		  0.5	 0.6148 	 0.0951 	 0.4137 	 0.0699 

		  -0.5	 -0.5045 	 0.1255 	 -0.7115 	 0.1073 

Variance-covariance				  

		  0.5	 0.6403 	 0.1222 	 0.4676 	 0.0927 

		  0.8	 1.2997 	 0.3263 	 1.0029 	 0.2457 

		  0.3162 	 0.5522 	 0.1304 	 -	 -

		  0.3536 	 0.2462 	 0.0994 	 -	 -

Table 2   A Simulated Example of a Recursive Multinomial Probit Model

α1

α2

θ1

θ2

δ11

δ21

δ12

δ22

σ
2
11

σ
2
33

 ∑31

 ∑41
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5. Possible application of the model in innovation research

From an empirical perspective, the recursive multinomial probit model can be applied to any situa-
tion where successive two discrete choices can be modeled jointly or in one-way causal relationships 
between two discrete choices can be modeled. The model can be applied to any research that uses 
a recursive probit model where a single choice from more than two alternatives can be considered. 
This section discusses the possible applicability of a recursive multinomial probit model in innova-
tion research. For this purpose, some previous studies that use a recursive probit model in innovation 
research are reviewed and the examples of the studies that can be extended through the use of a recur-
sive multinomial probit model are discussed.

Shaver (1998) examined the effect of entry mode choice (especially acquisition) on Foreign Direct 
Investment (FDI) survival using a recursive bivariate probit model. In their model, the first probit 
equation determines whether the entry mode is in the form of acquisition or not. The dummy vari-
able that represents the entry mode choice is then entered as the endogenous explanatory variable 
in the second probit equation that represents whether the firm survived or not; however, the entry 
modes of multinational firm are various such as a Green Field Investment, joint ventures, and acqui-
sition. Shaver’s study has a limitation in that it consider only one entry mode (i.e., acquisition) with-
out considering any other entry mode. To analyze the effect of various entry modes on FDI survival, 
each entry mode should be considered as an alternative in the first choice equation. This means that a 
single choice from more than two mutually exclusive alternatives should be considered in the estima-
tion model and then the recursive multinomial probit model can be applied to this situation. There-
fore, Shaver’s study can be extended as a research examining the effect of various entry modes on FDI 
survival using the recursive multinomial probit model.

Bowman and Mehay (1999) examined the effect of graduate education on job success using the 
recursive bivariate probit model. In their model, the first probit equation determines whether and 
individual attends graduate school or not, the endogenous dummy that represents the attendance is 
then entered as an explanatory variable in the second probit equation that indicates whether the in-
dividual is promoted or not. Although Bowman and Mehay (1999) examined the effect of graduate 
education on job success, we can generalize their study as an examination of the effect of education 
on job success since the education level of the individual varies. By using a recursive probit model, we 
can examine the effect of education level on job success and then the first probit equation is changed 
into a multinomial probit equation where various education levels such as bachelor’s degree, master’s 
degrees, and PhD degrees can be considered as alternatives.

The recursive multinomial probit model can be applied to the examination of the causal relation-
ship between various factors and innovation activity. Skuras et al. (2008) examined the impact of in-
vestment decisions on a firm’s innovation activity using the recursive bivariate probit model. In their 
model, the first probit equation determines whether a firm has decided to invest in a fixed capital as-
set, and then the endogenous dummy that represents the decision to invest is entered as explanatory 
variable in the second probit equation represents the occurrence of innovative activity such as prod-
uct innovation. Savignac (2008) examined the impact of financial constraints on innovation through 
use of the recursive bivariate probit model. In their model, the first probit equation is determining 
whether the firm faces financial constraints or not, and then the endogenous dummy that represents 
the existence of financial constraints is entered as an explanatory variable in the second probit equa-
tion that represents the occurrence of innovative activity. Since, these studies consider binary depen-
dent variables (such as the decision to invest, the existence of financial constraints, or the occurrence 
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of innovation activity) it is enough to use a recursive bivariate probit model to examine the causal 
relationship between binary dependent variables. However, if the alternatives in the first (or second) 
equation are mutually exclusive and are more than two alternatives, then the recursive multinomial 
probit model can be applied to address the simultaneous choices when a single decision from more 
than two options is considered in each choice. 

6. Concluding remarks

This study suggests a recursive multinomial probit model of a multinomial probit model with an 
endogenous dummy and the method of its estimation. A recursive bivariate probit model (which is 
a bivariate probit with endogenous dummy) is widely used to analyze one-way causal relationships 
between two choice behaviors; however, it has an obvious limitation in that only a binary dependent 
variable is considered in each equation. A recursive multinomial probit model extends a recursive 
probit model by making it possible to consider a single decision among two or more alternatives. 

A recursive multinomial probit model is developed based on standard framework of the multino-
mial probit model, and a Bayesian approach with Gibbs sampling is adopted for the estimation. A 
simulation exercise with artificial data sets was conducted and the results show that the model per-
forms well.

From an empirical perspective, the recursive multinomial probit model can be applied to any 
research that uses a recursive bivariate probit model, since the recursive multinomial probit model 
makes it possible to consider a single choice from more than two alternatives. In conclusion, the 
recursive multinomial probit model can play an important role in innovation research since it can 
extend the methodology of the causal relationship analysis. 
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