

22.9kV급 해저케이블 접속장치 개발〈Ⅱ〉

이 재 관(주)평일 부사장

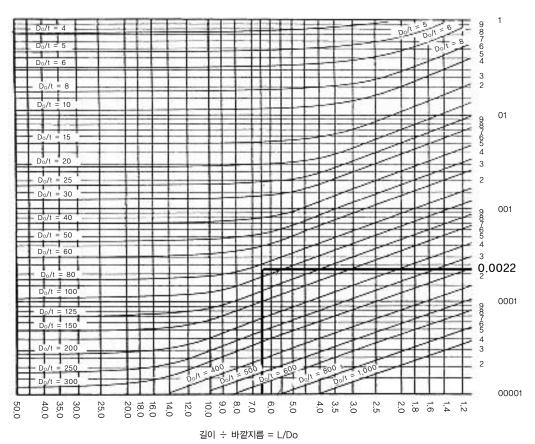
3. 해저케이블 접속장치의 개발

- 가. 접속장치의 설계
- 접속장치의 설계 조건
 - 해수에 의한 압력을 지탱하고, 해저케이블 접속부

를 안전하게 밀봉할 수 있는 구조이어야 한다.

⇒ 해저케이블의 수밀 요구특성 : 3kg/cm² / 24 hours

(J-POWER의 22.9kV 60mm2 4/C - XLPE SUBMARINE CABLE SPEC)


- 해저케이블의 인장력을 견딜 수 있는 강도를 가져야 한다.
 - ⇒ 해저케이블의 인장력(Max. permissible pulling tension): 18,095kg (J-POWER의 22.9kV 60mm2 4/C XLPE SUBMARINE CABLE SPEC)
 - ⇒ 22.9kV / 325mm2 4/C 의 인장력: 19,000kg (Hitachi Cable의 22.9kV 4/C - XLPE SUBMARINE CABLE 기준)
- 재질은 해수에 의한 부식을 최소화 할 수 있어야 한다.
- 형상 및 치수는 Read Sheath cable을 안전하게 접속할 수 있는 크기와 조립 및 설치가 용이한 구조이어야 한다.

■ 접속장치의 설계 검토

해저케이블 접속장치는 해저에 설치되어 해수에 의한 압력상태에서 강도를 유지하면서 밀봉특성을 유지하여야 하는 관계로 특별한 설계검토가 필요하다. 다음은 해수에 의한 외압을 받는 환경 하에서의 설계계산을 통하여 안전성을 확인하였다.

가. 직선접속함체에 대한 압력설계 계산

- 계산조건
 - L (해저케이블 접속장치 길이) : 3,000mm
 - D (해저케이블 접속장치 외경) : *Ф* 467mm
 - t (해저케이블 접속장치 함체 두께):5mm
 - P : 허용압력
 - A : 외압을 받는 원통형 용기의 압력계산에 관련한 계수(KEPIC MDP 부록 Ⅷ 참조)

(출처 : KEPIC MDP)

- B : 외압을 받는 원통형 용기의 압력계산에 관련한 계수(KEPIC MDP 참조)
- 1) L/D의 값을 계산하여 A(외압을 받는 원통형 용기의 압력계산에 관련한 계수) 값을 다음의 KEPIC MDP 부록 VII의 G 도표에서 찾는다.

$$\Rightarrow$$
 L/D = 3.000 / 467 = 6.42

$$\Rightarrow$$
 D/t = 467 / 5 = 93.4

위의 계산치를 근거로 A값을 읽으면 A = 0.0022 (외압을 받는 원통형 용기의 압력계산에 관련한 계수 확인)

- 2) 위에서 찾은 A값을 기준으로 B의 값을 확인하면 B = 5.600psi 임
 - ⇒ 위의 값을 근거로 외압을 받는 원통형 용기의 허용압력을 계산하면 다음과 같다.

$$P = \frac{4 \times B}{3(D/t)} = \frac{(4 \times 5,600)}{(3 \times 93.4)} = 80 \text{ psi}$$
$$= \frac{80}{14.22} = 5.63 \text{ kg/cm}^2$$

설계계산 결과를 작용압력과 비교해 보면 3 kg/cm^2 $< < 5.63 \text{kg/cm}^2$ 이므로 안전한 설계임을 알 수 있다.

나. 직선접속함체에 대한 강도설계 계산

접속장치함체는 해저케이블의 Amour층을 연결할 수 있는 구조로 해저케이블의 허용 인장력인 19,000kg 에서도 안전한 강도를 가져야 하므로 직선접속함체에 대한 허용인장강도에 대한 설계검토를 하였다.

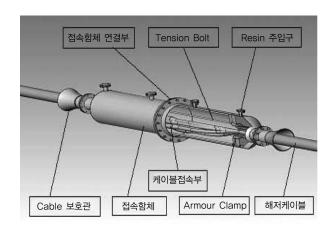
0 계산조건

- D(해저케이블 접속장치 외경) : *Ф* 467mm

- t (해저케이블 접속장치 함체 두꼐):5mm

- p (접속함체 재료의 인장강도: STS 316)

: 40kg/mm²


- d(Armour Clamp Tension Bolt의 골지름) :12mm
- N(Armour Clamp Tension Bolt의 수량) : 16ea
- A (직선접속함체 또는 볼트의 단면적): mm²
- P : 허용인장력 (kg)
- 직선접속함체의 강도계산

$$P = A \times p = [\pi \times \frac{(4672 - 4572)}{4}] \times 40$$

= 290,283kg

- \circ Armour Clamp Tension Bolt의 강도계산 $P = (A \times p) \times N = \{ [\frac{(\pi \times 122)}{4}] \times 40 \} \times 16$ = 72,382 kg
- 설계계산 결과를 해저케이블의 허용인장력과 비교해 보면 19,000kg 〈〈 72,382kg 이므로 안전한 설계임을 알 수 있다.

■ 직선접속장치 상세설계 및 제작

위에서와 같이 재질선정, 기존제품과의 비교검토, 참고 설계에 따른 설계검토에 의하여 압력 및 강도조건을 고려하여 설계한 직선접속함체의 모델링 결과 다음과 같은 형태로 제작되었다.

나. 접속장치 시공

해저케이블 접속장치의 시공은 $60 \text{sq} \times 4 \text{C}$ 해저케이블과 $325 \text{sq} \times 3 \text{C}$ 해저케이블 접속장치를 각각 시공하였으며, 다음은 $60 \text{sq} \times 4 \text{C}$ 해저케이블 접속장치에 대하여 중요 부분별로 대표적인 시공작업에 따른 절차이다.

① 해저케이블 표피 제거

- A측의 해저케이블 표피를 벗겨 낸다.

② Armour Ring 조립

 A측에 Armour Ring을 육각Wrench로 조립하여 고정시킨다.

③ A측 해저케이블 상별로 케이블 분리

- A측의 해저케이블을 상별(R, S, T, N)로 케이블을 분리하여 준비한다.

④ A측 해저케이블 상별 케이블 가공

- A측의 해저케이블 상별(R, S, T, N)로 직선 접속재 시공위한 가공을 완료한다.

⑤ B측 해저케이블 상별 케이블 가공

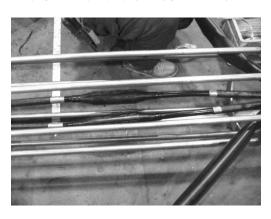
- B측의 해저케이블 상별(R, S, T, N)로 직선접속재 시공위한 가공을 완료한다.

⑥ 직선접속재 삽입 시공

- B측의 해저케이블 상별(R, S, T, N)로 직선접속재를 삽입하여 준비한다.

⑦ Tension Bolt 조립

- A측의 Armour Clamp에 Tension Bolt를 조립 하여 둔다.


⑧ B측 시공부분 조립

- B측 시공부분을 Tension Bolt에 끼워 서로 조립한다.

⑨ 직선접속재 시공완료

- 각 상별로 직선접속재를 시공 완료한다.

⑩ Lead Sheath 연결시공

- 편조선을 이용하여 A측과 B측의 Lead Sheath를 연결 시공한다.

⑪ Silicone Tape 시공

- Silicone Tape을 반겹쳐 감기로 감아 방수 시공한다.

② 열수축 Tube 시공

- 열수축 Tube를 시공한다.

③ 접속함체에 직선시공부 삽입

- 접속함체 내부로 직선시공 완료한 조립체를 삽입 한다.

⑭ 접속함체 조립시공

- A, B측의 접속함체를 서로 조립 하여 중앙부의 O-Ring이 밀착되도록 Bolt, Nut, Washer로 체결하여 조립한다.

⑤ 방수클램프 조립시공

- A, B측의 접속함체 말단부에 방수 클램프를 조립용 홈에 넣고, 볼트를 조여 방수패킹이 충분히 확장되어 밀착되도록 조립한다.

⑥ Cable 보호관 조립

- A, B측의 접속함체 말단부에 방수 클램프를 조립용 홈에 넣고, 볼트를 조여 방수패킹이 충분히 확장되어 밀착되도록 조립한다.

⑰ 액상수지 주입

- 상부 Hole Flange를 개방하여 액상 수지를 배합 하여 주입하여 해저케 이블 접속장치 시공을 완료한다.

다. 성능평가

■ 수밀시험

해저케이블 직선접속함 시제품을 수밀시험장치 Tank 내부에 넣고 물을 주입하여 채운 다음, 수압 3kg/cm^2 를 가하여 24시간 경과 후 직선접속함 내부로 수분이 침투 되는가를 확인하였다.

○ 시험기준의 설정

- 시험기준은 J-Power System Corporation이 2006년 공급한 22.9kV 4/C 60sq / XLPE SUBMARINE CABLE의 SPECIFICATION (Ref No.: JSP23-X0793 Rev. A)을 기준으로 하였다.
- 수밀시험(Water barrier test) 기준 : 3kg/cm² – 24hr
- 수밀시험 결과 : 수압 3kg/cm²를 가하여 24 시간 경과 후 직선접속함 내부로 수분이 침투되지 않았다.

■ Armour Clamp에 대한 인장시험

'60sq×4C' 해저케이블 Armour를 Armour Clamp와

시험완료 후 시제품

각각 조립 시공하고 Tension Bolt로 연결 조립한 다음에 인장시험장치를 조립한 다음, 수평인장시험기를 이용하여 인장시험을 수행하였다.

Bolt, 해저케이블이 모두 62,000kg 까지 파괴 되지 않았다.

○ 시험기준의 설정

- 시험기준은 J-Power System Corporation이 2006년 공급한 22.9kV 4/C 60sq / XLPE SUBMARINE CABLE의 SPECIFICATION (Ref No. : JSP23-X0793 Rev. A)을 기준으로 하였다
- 인장시험 (Max. permissible Pulling Tension) 기준 : 18.095 kg
- 인장시험 결과 : 해저케이블의 포설장력(Max. permissible pulling tension)인 18,095kg을 안전하게 견디고, Armour Clamp, Tension

4. 향후 계획

- 신설되는 22.9kV급 해저케이블 공사의 접속장치로 활용.
- 22.9kV급 해저케이블의 고장 시에 대비한 예비품을 보유, 긴급 보수용 접속장치로 활용.
- 향후 35kV 및 66kV, 송전급 해저케이블 접속장치 개발기술의 기반구축 활용.
- 해외 PLANT 및 해외 기자재 수출시 활용.
- 해상풍력단지용 해저케이블 직 접속재 및 접속 장치에 개발제품 적용. KEA

[참고문헌]

- [1] Thomas. Worzyk, "Submarine Power Cables", 2009, Springer
- [2] 부식방지협회 편, "최신 금속방식편람", 2005, 기전연구사,
- [3] 電力ケーブル技 術 ハンドブック1989, 電氣書院
- [4] 흑일도~마삭도간#1 해저케이블 복구 보고서, 1988. 8, 한전 전남지사
- [5] 한전표준규격, "23kV 케이블 종단접속재 및 직선접속재", 2008
- [6] Hitachi Cable, Ltd, "SPECIFICATION for 22,9kV XLPE INSULATED SUBMARINE CABLE", 1997
- [7] J-Power Systems Corporation, "SPECIFICATION for 22,9kV XLPE INSULATED SUBMARINE CABLE", 2006
- [8] VISCAS Corporation, "SPECIFICATION for 22.9kV XLPE INSULATED POWER + OPTICAL FIBER CORES COMPOSITE SUBMARINE CABLE," 2006
- [9] ABB's high voltage cable unit in Sweden, "Submarine Power Cables" (www.abb.com/cables)
- [10] KT서브마린, "해저케이블 기술동향과 전망", www.ktsubmarine.co.kr,
- [11] 디지털타임스 길재식 기자, "해저케이블의 역사와 구조"