High Molecular Weight Glutenin Subunit in Common Wheat (Triticum aestivum L.)

밀의 고분자 글루테닌 단백질

  • 이종열 (농촌진흥청 국립농업과학원) ;
  • 김영태 (농촌진흥청 국립농업과학원) ;
  • 강천식 (농촌진흥청 국립과학원) ;
  • 임선형 (농촌진흥청 국립농업과학원) ;
  • 하선화 (농촌진흥청 국립농업과학원) ;
  • 안상낙 (충남대학교 농업생명과학대학 농학과) ;
  • 김영미 (농촌진흥청 국립농업과학원)
  • Received : 2011.10.18
  • Accepted : 2011.12.23
  • Published : 2011.12.30

Abstract

Gluten is the main functional component of wheat, and is the main source of the viscoelastic properties in a dough. One of the gluten group is glutenin, which is composed of high molecular weight (HMW) and low molecular weight (LMW) subunits. The HMW glutenin subunits (HMW-GS) have been shown to play a crucial role in determining the processing properties of the grain. They are encoded by the Glu-1 loci located on the long arms of homeologous group one chromosomes, with each locus comprising two genes encoding x- and y-type subunits. The presence of certain HMW subunits is positively correlated with good bread-making quality. The highly conserved N- and C- terminal contaning cystein residues which form interand intra-chain disulphide bonds. This inter chain disulphide bonds stabilize the glutenin polymers. In contrast, the repetitive domains that comprise the central part of the HMW-GS are responsible for the elastic properties due to extensive arrays of interchain hydrogen bonds. In this review, we discuss HMW-GS, HMW-GS structure and gluten elasticity, relationship between HMW-GS and bread wheat quality and genetic engineering of the HMW-GS.

Keywords

Acknowledgement

Supported by : 국립농업과학원

References

  1. Altpeter F, Vimla V, Vibha S, Indra KV. 1996. Integration and expression of the high-molecular-weight glutenin subunit 1Ax1 gene into wheat. Nature Biotechnol 14:1155-59. https://doi.org/10.1038/nbt0996-1155
  2. Altpeter F, Popelka JC, Wieser H. 2004. Stable expression of 1Dx5 and 1Dy10 high-molecular-weight glutenin subunit genes in transgenic rye, drastically increases the polymeric glutelin fraction in rye flour. Plant Mol Biol 54:783-792. https://doi.org/10.1007/s11103-004-0122-5
  3. Alvarez ML, Guelman S, Halford NG, Lusting S, Reggiardo MI, Ryboshkina N, Shewry P, Stein J, Vallejos RH. 2000. Silencing of HMW glutenins in transgenic wheat expressing extra HMW subunits. Theor Appl Genet 100:319-327. https://doi.org/10.1007/s001220050042
  4. Anderson OD, Greene. 1997. The a-gliadin gene family. II. Microsatellites within the coding sequence are responsible for protein size variation and contribute to pseudogene generation. Theor Appl Genet 95:59-65. https://doi.org/10.1007/s001220050532
  5. Anderson OD, Larka L, Christoffers MJ, McCue KF, Gustafson JP. 2002. Comparison of orthologous and paralogous DNA flanking the wheat high molecular weight glutenin genes: sequence conservation and divergence, transposon distribution, and matrix-attachment regions. Genome 45:367-80. https://doi.org/10.1139/g01-137
  6. Anderson OD, Rausch C, Moullet O, Lagudah ES. 2003. The wheat D-genome HMW-glutenin locus: BAC sequencing, gene distribution, and retrotransposon clusters. Funct Integr Genomics 3:56-68.
  7. Araki E, Ikeda TM, Ohgihara Y, Toyoda A, Yano H. 2008. Development of transgenic rice (Oryza sativa L.) expressing wheat high- and low-molecular-weight glutenin subunit proteins. Breed Sci 58:121-128. https://doi.org/10.1270/jsbbs.58.121
  8. Beccari JB (1745) De frumento. de bononiensi scientarium et artium. Intituto atque acaemia commentarii Bologna 2:122-127
  9. Bekes F, Anderson OD, Gras PW, Gupta RB, Tam A, Wrigley CW, Appels R. 1994. The contribution to mixing properties of 1D HMW glutenin subunits expressed in a bacterial system. In: Henry RJ, Ronalds JA (eds) Improvement of cereal quality by genetic engineering. Plenum Press, New York. pp.97-103.
  10. Bekes F, Gras PW, Gupta RB. 1995. The effect of purified cereal polypeptides on the mixing properties of dough. In: Williams YA, Wrigley CW (eds) Proceedings of the 45th Australian Cereal Chemistry Conference. The Royal Australian Chemical Institute, Cereal Chemistry Division. pp.92-98.
  11. Belton PS, Colquhoun IJ, Grant J. 1995. FTIR and NMR studies on the hydration of a high Mr subunit of glutenin. Int J Biol Macromol 17:74-80. https://doi.org/10.1016/0141-8130(95)93520-8
  12. Belton PS. 1999. On the elasticity of wheat gluten. J Cereal Sci 29:103-107. https://doi.org/10.1006/jcrs.1998.0227
  13. Blechl AE, Lin J, Nguyen S, Chan R, Anderson OD, Dupont FM. 2007. Transgenic wheats with elevated levels of 1Dx5 and/or 1Dy10 high-molecular-weight glutenin subunits yield doughs with increased mixing strength and tolerance. J Cereal Sci 45:172-183. https://doi.org/10.1016/j.jcs.2006.07.009
  14. Bregitzer P, Blechl AE, Fiedler D, Lin J, Sebesta P, De Soto, Chicaiza O, Dubcovsky J. 2006. Changes in high molecular weight glutenin subunit composition can be genetically engineered without affecting wheat agronomic performance. Crop Sci 46:1553-1563. https://doi.org/10.2135/cropsci2005.10-0361
  15. Butow BJ, Ma W, Gale KR, Cornish GB, Rampling L, Larroque O, Morell MK, Be'ke's F. 2003. Molecular discrimination of Bx7 alleles demonstrates that a highly expressed high-molecular-weight glutenin allele has a major impact on wheat flour dough strength. Theor Appl Genet 107:1524-1532. https://doi.org/10.1007/s00122-003-1396-8
  16. Butow BJ, Gale KR, Ikea J, Juha'sz A, Bedo"Z, Tama's L, Gianibelli MC. 2004. Dissemination of the highly expressed Bx7 glutenin subunit (Glu-B1al allele) in wheat as revealed by novel PCR markers and RP-HPLC. Theor Appl Genet 109:1525-1535. https://doi.org/10.1007/s00122-004-1776-8
  17. Cornish GB, Bekes F, Eagles HA, Payne PI. 2006. Prediction of dough properties for bread wheat. In: Wrigley C, Bekes F, Bushuk W, (eds). Gliadin and glutenin the unique balance b of wheat quality. StPaul, Minn.: American Association of Cereal Chemistry.
  18. D'Ovidio R, Anderson OD. 1994. PCR analysis to distinguish between alleles of a member of a multigene family correlated with wheat bread-making quality. Theor Appl Genet 88:759-763. https://doi.org/10.1007/BF01253982
  19. D'Ovidio R, Lafiandra D, Porceddu E. 1996. Identification and molecular characterisation of a large insertion within the repetitive domain of a high-molecular-weight glutenin subunit gene from hexaploid wheat. Theor Appl Genet 93:1048-1053. https://doi.org/10.1007/BF00230123
  20. Feeney KA, Wellner N, Gilbert SM, Halford NG, Tatham AS, Shewry PR, Belton PS. 2003. Molecular structures and interactions of repetitive peptides based on wheat glutenin subunits depend on chain length. Biopolym Biospectrosc 72:123-131. https://doi.org/10.1002/bip.10298
  21. Feldman M. 1995. Wheats. In: Smartt J, Simmonds NW, (eds). Evolution of crop plants. Harlow, UK: Longman Scientific and Technical. pp.185-192.
  22. Feldman M. 2001. Origin of cultivated wheat. In: Bonjean AP, Angus WJ, (eds). The world wheat book: a history of wheat breeding. Paris, France: Lavoisier Publishing. pp.3-56.
  23. Francis HA, Leitch AR, Koebner RMD. 1995. Conversion of a RAPD-generated PCR product, containing novel dispersed repetitive element, into a fast assay for the presence of rye chromatin in wheat. Theor Appl Genet 90:636-642.
  24. Gadaleta A, Blechl AE, Nguyen S, Cardone M, Ventura M, Quick JS, Blanco A. 2008. Stably expressed d-genomederived HMW glutenin subunit genes transformed into different durum wheat genotypes change dough mixing properties. Mol Breed 22:267-279. https://doi.org/10.1007/s11032-008-9172-8
  25. Gage LP, Manning RF. 1980. Internal structure of the silk fibroin gene of Bombyx mori. I. The fibroin gene consists of a homogeneous alternating array of repetitious crystalline and amorphous coding sequences. J Biol Chem 255:9444- 9450.
  26. Galili G. 1997. The prolamin storage proteins of wheat and its relatives. In: Larkins BA, Vasil IK (eds) Cellular and molecular biology of plant seed development. luwer, Dordrecht. pp.221-256.
  27. Gupta RB, Paul JG, Cornish GB, Palmer GA, Bekes F, Rathjen AJ. 1994. Allelic variation at glutenin subunit and gliadin loci, Glu-1, Glu-3 and Gli-1, of common wheats. 1. Its additive and interaction effects on dough properties. J Cereal Sci 19:9-17. https://doi.org/10.1006/jcrs.1994.1003
  28. Halford NG, Field JM, Blair H, Urwin P, Moore K, Robert L, Thompson R, Flavell RB, Tatham AS, Shewry PR. 1992. Analysis of HMW glutenin subunits encoded by chromosome 1A of bread wheat (Triticum aestivum L.) indicates quantitative effects on grain quality. Theor Appl Genet 83:373-378.
  29. He XY, He ZH, Zhang LP, Sun DJ, Morris CF, Fuerst EP, Xia XC. 2007. Allelic variation of polyphenol oxidase (PPO) genes located on chromosomes 2A and 2D and development of functional markers for the PPO genes in common wheat. Theor Appl Genet 115:47-58. https://doi.org/10.1007/s00122-007-0539-8
  30. He XY, Zhang YL, He ZH, Wu YP, Xiao YG, Ma CX, Xia XC. 2008. Characterization of a phytoene synthase 1 gene (Psy1) located on common wheat chromosome 7A and development of a functional marker. Theor Appl Genet 116:213-221. https://doi.org/10.1007/s00122-007-0660-8
  31. He XY, He ZH, Ma W, Appels R, Xia XC. 2009. Allelic variants of phytoene synthase 1 (Psy1) genes in Chinese and CIMMYT wheat cultivars and development of functional markers for flour colour. Mol Breed 23:553-563. https://doi.org/10.1007/s11032-009-9255-1
  32. Liang D, Tang JW, Pena RJ, Singh R, He XY, Shen XY, Yao DN, Xia XH, He ZH. 2010. Characterization of CIMMYT bread wheats for high and low-molecular weight glutenin subunits and other quality-related genes with SDS-PAGE, RP-HPLC and molecular markers. Euphytica 172:235-250. https://doi.org/10.1007/s10681-009-0054-x
  33. Ikeda TM, Araki E, Fujita Y, Yano H. 2006. Characterization of low-molecular-weight glutenin subunit genes and their protein products in common wheats. Theor Appl Genet 112:327-34. https://doi.org/10.1007/s00122-005-0131-z
  34. Ikeda TM, Nagamine T, Fukuoka H, Yano H. 2002. Identification of new low-molecular-weight glutenin subunit genes in wheat. Theor Appl Genet. 104:680-687. https://doi.org/10.1007/s001220100756
  35. Keck B, Kohler P, Wieser H. 1995. Disulphide bonds in wheat gluten: cystine peptides derived from gluten proteins following peptic and thermolytic digestion. Z Lebensm Unters Forsch 200:432-439. https://doi.org/10.1007/BF01193253
  36. Kohler P, Belitz HD, Wieser H. 1991. Disulphide bonds in wheat gluten: isolation of a cysteine peptide from glutenin. Z Lebensm Unters Forsch 192:234-239. https://doi.org/10.1007/BF01202885
  37. Kohler P, Belitz HD, Wieser H. 1993. Disulphide bonds in wheat gluten: further cysteine peptides from high molecular weight (HMW) and low molecular weight (LMW) subunits of glutenin and from $\gamma$-gliadins. Z Lebensm Unters Forsch 196:239-247. https://doi.org/10.1007/BF01202740
  38. Kohler P, Keck B, Muller S, Wieser H. 1994 Disulphide bonds in wheat gluten. In Wheat kernel proteins, molecular and functional aspects, pp45-54. Viterbo, Italy: University of Tuscia.
  39. Lamacchia C, Shewry PR, Di Fonzo N, Forsyth JL, Harris N, Lazzeri PA, Napier JA, Halford NG, Barcelo P. 2001. Endosperm-specific activity of a storage protein gene promoter in transgenic wheat seed. J Exp Bot 52: 243-250. https://doi.org/10.1093/jexbot/52.355.243
  40. Lei ZS, Gale KR, He ZH, Gianibelli C, Larroque O, Xia XC, Butow BJ, Ma W. 2006. Y-type gene specific markers for enhanced discrimination of high-molecular weight glutenin alleles at the Glu-B1 locus in hexaploid wheat.J Cereal Sci 43:94-101. https://doi.org/10.1016/j.jcs.2005.08.003
  41. Leon E, Marin S, Gimenez MJ, Piston F, Rodriguez-Quijano M, Shewry PR, Barro F. 2009. Mixing properties and dough functionality of transgenic lines of a commercial wheat cultivar expressing the 1A${\times}$1, 1D${\times}$5 and 1Dy10 HMW glutenin subunit genes. J Cereal Sci 49:148-156. https://doi.org/10.1016/j.jcs.2008.08.002
  42. Lewis R. 2003. Sequences, structures and properties of spider silks. In: Shewry PR, Tatham AS, Bailey AJ (eds) Elastomeric proteins: structures, biomechanical properties and biological roles. Cambridge University Press, Cambridge. pp.136-151.
  43. Liu L, Ikeda TM, Branlard G, Pena RJ, Rogers WJ, Lerner SE, Kolman MA, Xia X, Wang L, Ma W, Appels R, Yoshida H, Wang A, Yan Y, He Z. 2010. Comparison of low molecular weight glutenin subunits identified by SDS-PAGE, 2-DE, MALDI-TOF-MS and PCR in common wheat. BMC Plant Biol 24;10:124.
  44. Liu YC, Zhu HL, Cheng SH, Ma ZQ. 2005. PCR-based molecular markers for Wx-A1 and Wx-D1 genes of wheat. J Triticeae Crops 25:1-5.
  45. Ma W, Zhang W, Gale KR. 2003. Multiplex-PCR typing of high molecular weight glutenin alleles in wheat. Euphytica 134:51-60. https://doi.org/10.1023/A:1026191918704
  46. Manning RF, Gage LP. 1980. Internal structure of the silk fibroin gene of Bombyx mori. II. Remarkable polymorphism of the organisation of the crystalline and amorphous coding sequences. J Biol Chem 255:9451-9457.
  47. Nakamura T, Vrinten P, Saito M, Konda M. 2002. Rapid classification of partial waxy wheats using PCR-based markers. Genome 45:1150-1156. https://doi.org/10.1139/g02-090
  48. Ng PKW, Bushuk W. 1988. Statistical relationships between high molecular weight subunits of glutenin and bread-making quality of Canadian grown wheats. Cereal Chem 65:408-13.
  49. Oszvald M, Jenes B, Tomoskozi S, Bekes F, Tamas L 2007 Expression of the 1Dx5 high-molecular weight glutenin subunit protein in transgenic rice. Cereal Res Commun 35:1543-1549. https://doi.org/10.1556/CRC.35.2007.4.1
  50. Pagnotta MA, Nevo E, Beiles A, Porceddu E. 1995. Wheat storage proteins: glutenin diversity in wild emmer, Triticum dicoccoides, in Israel and Turkey. 2. DNA diversity detected by PCR. Theor Appl Genet 91:409-414.
  51. Payne PI, Law CN, Mudd EE. 1980. Control by homologous group 1 chromosomes of the high-molecularweight subunits of glutenin, a major protein of wheat endosperm. Theor Appl Genet 58:113-120.
  52. Payne PI, Holt LM, Jackson EA, Law CN. 1984. Wheat storage proteins: their genetics and their potential for manipulation by plant breeding. Philos Trans R Soc Lond B 304:359-71. https://doi.org/10.1098/rstb.1984.0031
  53. Payne PI. 1987. Genetics of wheat storage proteins and the effect of allelic variation on breadmaking quality. Annu Rev Plant Physiol 38:141-153.
  54. Pierucci VRM, Tilley M, Graybosch RA, Blechl AE, Bean SR, Tilley KA. 2009. Effects of overexpression of high molecular weight glutenin subunit Dy 10 on wheat tortilla properties. J Agric Food Chem 57:6318-6326. https://doi.org/10.1021/jf900629s
  55. Popineau Y, Cornec M, Lefebvre J, Marchylo B. 1994. Influence of high Mr glutenin subunits on glutenin polymers and rheological properties of gluten and gluten subfractions of near-isogenic lines of wheat Sicco. J Cereal Sci 19:231-241. https://doi.org/10.1006/jcrs.1994.1030
  56. She M, Ye X, Yan Y, Howit C, Belgard M, Ma W. 2011. Gene networks in the synthesis and deposition of protein polymers during grain development of wheat. Funct Integr Genomics. 11:23-35. https://doi.org/10.1007/s10142-010-0196-x
  57. Shewry PR. 1999. The synthesis, processing, and deposition of gluten proteins in the developing wheat grain. Cereal Foods World 44:587-589.
  58. Shewry PR. 2009. Wheat. J Exp Bot 6:1537-1553.
  59. Shewry PR, Halford NG 2002 Cereal seed storage proteins: structures, properties and role in grain utilization. J Exp Bot 53:947-958 https://doi.org/10.1093/jexbot/53.370.947
  60. Shewry PR, Halford NG, Tatham AS. 1992. High molecular weight subunits of wheat glutenin. J Cereal Sci 15:105- 120 https://doi.org/10.1016/S0733-5210(09)80062-3
  61. Shewry PR, Halford NG, Lafiandra D 2003a. In: Hall JC, Dunlap JC, Friedman T (eds) The genetics of wheat gluten proteins. Adv Genet, vol 49. Academic Press, San Diego. pp.111-184.
  62. Shewry PR, Halford NG, Tatham AS, Popineau Y, Lafiandra D, Belton PS. 2003b. The high molecular weight subunits of wheat glutenin and their role in determining wheat processing properties. Adv Food Nutr Res 45:221-302.
  63. Shewry PR, Tatham AS, Bailey A (eds) 2003c. Elastomeric proteins. Cambridge University Press, Cambridge. pp.331- 351.
  64. Stamova BS, Roessner U, Suren S, Laudencia-Chingcuanco D, Bacic A, Beckles DM. 2009. Metabolic profiling of transgenic wheat over-expressing the high-molecular-weight Dx5 glutenin subunit. Metabolomics 5:239-252. https://doi.org/10.1007/s11306-008-0146-y
  65. Sun DJ, He ZH, Xia XC, Zhang LP, Morris CF, Appels R, Ma WJ, Wang H. 2005. A novel STS marker for polyphenol oxidase activity in bread wheat. Mol Breed 16:209-218. https://doi.org/10.1007/s11032-005-6618-0
  66. Tao HP, Adalsteins AE, Kasarda DD. 1992. Intermolecular disulfide bonds link specific high-molecular-weight glutenin subunits in wheat endosperm. Biochimica Biophysica Acta 1159:13-21. https://doi.org/10.1016/0167-4838(92)90069-P
  67. Vallega V, Waines JG. 1987. High molecular weight glutenin subunit variation in Triticum turgidum var. dicoccum. Theor Appl Genet 74:706-710.
  68. Vasil V, Castillo AM, Fromm ME, Vasil Ik. 1992. Herbicide resistant fertile transgenic wheat plants obtained by microprojectile bombardment of regenerable embryogenic callus. BioTchnol 10:667-674.
  69. Weeks JT, Anderson OD, Blechl AE. 1993. Rapid production of multiple independent lines of fertile transgenic wheat (Triticum aestivum). Plant Physiol 102:1077-1084.
  70. Wieser H. 1996. Relation between gliadin structure and celiac toxicity. Acta Paediatr 412 (85 Suppl):3-9.
  71. Wieser H. 2007. Chemistry of gluten proteins. Food Micro 24:115-119. https://doi.org/10.1016/j.fm.2006.07.004
  72. Wrigley CW. Bietz JA. 1988. Proteins and amino acids. In: Pomeranz Y. (Eds) Wheat Chemistry and Technology, vol. 1. St. Paul American Association of Cereal Chemistry. pp.159-275.
  73. Yahata E,Wakako MF, Zenta N, Yoshihiko Y, Akihiro H, Hisashi S, Masatoshi T, Haruo S. 2006. Relationship between the dough quality and content of specific glutenin proteins inwheatmill streams,andits application tomakingflour suitable forinstant Chinese noodles. Biosci Biotechnol Biochem 70(4):788-97. https://doi.org/10.1271/bbb.70.788
  74. Yeboah NA, Freedman RB, Popineau Y, Shewry PR, Tatham AS. 1994. Fluorescence studies of two $\gamma$-gliadin tractions from bread wheat. J Cereal Sci 19:141-148. https://doi.org/10.1006/jcrs.1994.1019
  75. Zhang W, Gianibelli MC, Rampling LR, Gale KR. 2004. Characterization and marker development for low molecular weight glutenin genes from Glu-A3 alleles of bread wheat (Triticum aestivum L.). Theor Appl Genet 108:1409-1419. https://doi.org/10.1007/s00122-003-1558-8