Analysis of Genetic Diversity and Population Structure for Core Set of Waxy and Normal Maize Inbred Lines using SSR Markers

SSR 분자마커를 이용한 찰옥수수 및 종실용 옥수수 자식계통들의 핵심집단에 대한 유전적 다양성 및 집단구조 분석

  • Sa, Kyu Jin (Department of Applied Plant Sciences, College of Agriculture and Life Science, Kangwon National University) ;
  • Kim, Jin-Ah (Department of Applied Plant Sciences, College of Agriculture and Life Science, Kangwon National University) ;
  • Park, Ki Jin (Maize Experiment Station, Kangwon Agricultural Research and Extension Services) ;
  • Park, Jong Yeol (Maize Experiment Station, Kangwon Agricultural Research and Extension Services) ;
  • Goh, Byeong Dae (Maize Experiment Station, Kangwon Agricultural Research and Extension Services) ;
  • Lee, Ju Kyong (Department of Applied Plant Sciences, College of Agriculture and Life Science, Kangwon National University)
  • 사규진 (강원대학교 농업생명과학대학 식물자원응용공학과) ;
  • 김진아 (강원대학교 농업생명과학대학 식물자원응용공학과) ;
  • 박기진 (강원도 농업기술원 옥수수시험장) ;
  • 박종열 (강원도 농업기술원 옥수수시험장) ;
  • 고병대 (강원도 농업기술원 옥수수시험장) ;
  • 이주경 (강원대학교 농업생명과학대학 식물자원응용공학과)
  • Received : 2011.11.13
  • Accepted : 2011.12.01
  • Published : 2011.12.30

Abstract

Maize is divided into two types based on the starch composition of the endosperm in the seed, normal maize(or non-waxy maize) and waxy maize. In this study, genetic diversity and population structure were investigated among 80 waxy maize and normal inbred lines(40 waxy maize inbred lines and 40 normal maize inbred lines) using 50 SSR markers. A total of 242 alleles were identified at all the loci with an average of 4.84 and a range between 2 and 9 alleles per locus. The gene diversity values varied from 0.420 to 0.854 with an average of 0.654. The PIC values varied from 0.332 to 0.838 with an average of 0.602. To evaluate the population structure, STRUCTURE 2.2 program was employed to confirm genetic structure. The 80 waxy and normal maize inbred lines were separated with based on the membership probability threshold 0.8, and divided into groups I, II and admixed group. The 13 waxy maize inbred lines were assigned to group I. The 45 maize inbred lines including 7 waxy maize inbred lines and 38 normal maize inbred lines were assigned to group II. The 22 maize inbred lines with 20 waxy maize inbred lines and 2 normal maize inbred lines were contained in the admixed group. The cluster tree generated using the described SSR markers recognized three major groups at 31.7% genetic similarity. Group I included 40 waxy maize inbred lines and 11 normal maize inbred lines, and Group II included 27 normal maize inbred lines. Group III consist of only 2 normal maize inbred lines. The present study has demonstrated the utility of SSR analysis for the study of genetic diversity and the population structure among waxy and normal maize inbred lines. The information obtained from the present studies would be very useful for designing efficient maize breeding programs in Maize Experiment Station, Kangwon Agricultural Research and Extension Services.

본 연구는 총 50개의 SSR 마커를 이용하여, 찰옥수수 및 종실용 옥수수 핵심집단(찰옥수수 40계통, 종실용 옥수수 40계통)의 자식계통들의 유전적 다양성, 집단구조 및 계통유연관계를 분석하였다. 1. 그 결과 65bp에서 225bp 크기의 범위로 총 242개의 대립단편들을 증폭시켰다. SSR primer들에서 증폭된 대립단편의 수는 최소 2개에서부터 최대 9개까지의 범위로 나타났고, 평균 4.84개가 증폭되었다. 그리고 GD값은 0.420에서 0.854의 범위로 나타났고, 평균 0.654의 값을 나타내었다. 2. 80개의 옥수수 자식계통들의 집단구조를 분석한 결과, 13개의 찰옥수수 자식계통은 group I에 포함되었고, Group II는 7개의 찰옥수수 자식계통과 38개의 종실용 옥수수 자식계통들이 포함되었다. 나머지 22개의 자식계통들은 admixed group에 포함되었으며, 20개 찰옥수수 자식계통과 2개의 종실용 옥수수 자식계통으로 구성되어있다. 3. UPGMA법에 의한 계통유연관계 분석 결과, 80개 옥수수 자식계통들은 유전적 유사성 31.7% 수준에서 크게 3개의 그룹으로 나누어졌다. Group I은 40개의 찰옥수수 자식계통과 11개의 종실용 옥수수 자식계통을 포함하고 있었고, Group II는 27개의 종실용 옥수수 자식계통을, 그리고 Group III은 단지 2개의 종실용 옥수수 자식계통을 포함하고 있었다. 따라서 본 연구의 결과는 앞으로 강원도 농업기술원 옥수수시험장에서 육성한 찰옥수수 및 종실용 옥수수 자식계통들에 대한 유전자원 관리 및 선발 그리고 교배조합 구성 및 예측 등에 유용한 정보를 제공할 것으로 기대된다.

Keywords

Acknowledgement

Supported by : 농촌진흥청

References

  1. Akagi H, Yokozaki Y, Inagaki A, Fujimura T. 1997. Highly polymorphic microsatellites of rice consist of AT repeats, and a classification of closely related cultivars with these microsatellite loci. Theor. Appl. Genet. 94:61-67. https://doi.org/10.1007/s001220050382
  2. Blair MW, Diaz LM, Buendia HF, Duque MC. 2009. Genetic diversity, seed size association and population structure of a core collection of common beans(phaseolus vulgaris L.). Theor. Appl. Genet. 119:955-972. https://doi.org/10.1007/s00122-009-1064-8
  3. Bostein D, White RL, Skolnick M, Davis RW. 1980. Construction of a genetic linkage map in man using restriction fragment length polymorphisms. Am. J. Genet. 32:314-331.
  4. D'hoop BB, Paulo MJ, Kowitwanich K, Sengers M, Visser RGF, van Eck HJ, van Eeuwijk FA. 2010. Population structure and linkage disequilibrium unraveled in tetraploid potato. Theor. Appl. Genet. 121:1151-1170. https://doi.org/10.1007/s00122-010-1379-5
  5. Dellaporta SL, Wood J, Hicks JB. 1983. A simple and rapid method for plant DNA preparation. Version II. Plant Mol. Biol. Rep. 1:19-21. https://doi.org/10.1007/BF02712670
  6. Dice LR. 1945. Measures of the amount of ecologic association between species. Ecology 26: 297-302. https://doi.org/10.2307/1932409
  7. Enoki H, Sato H, Koinuma K. 2002. SSR analysis of genetic diversity among maize inbred lines adapted to cold regions of Japan. Theor. Appl. Genet. 104: 1270-1277. https://doi.org/10.1007/s00122-001-0857-1
  8. Evanno G, Regnaut S, Goudet J. 2005. Detecting the number of clusters of individuals using the software STRUCTURE: a simulation study. Mol. Ecol. 14:2611-2620. https://doi.org/10.1111/j.1365-294X.2005.02553.x
  9. Hallauer AR, Russell WA, Lamkey KR. 1988. Corn breeding. pp 463-564. In G.F. Sprague and JW Dudley (ed). Corn and Corn Improvement. 3rd ed. Agron., Monogr. 18. Madison, WI, USA.
  10. van Inghelandt D, Melchinger AE, Lebreton C, Stich B. 2010. Population and genetic diversity in a commercial maize breeding program assessed with SSR and SNP markers. Theor. Appl. Genet. 120:1289-1299. https://doi.org/10.1007/s00122-009-1256-2
  11. Jin L, Lu Y, Xiao P, Sun M, Corke H, Bao J. 2010. Genetic diversity and population structure of a rice germplasm for association mapping. Theor. Appl. Genet. 121:475-487. https://doi.org/10.1007/s00122-010-1324-7
  12. Labate JA, Lamkey KR, Mitchell SH, Kresovich S, Sullivan H, Smith JSC. 2003. Molecular and historical aspects of Corn Belt dent diversity. Crop Sci. 43:80-91. https://doi.org/10.2135/cropsci2003.0080
  13. LI J, Schulz B, Stich B. 2010. Population structure and genetic diversity in elite sugar beet germplasm investigated with SSR markers. Euphytica 175:35-42. https://doi.org/10.1007/s10681-010-0161-8
  14. Liu K, Muse SV. 2005. PowerMarker: an integrated analysis environment for genetic marker analysis. Bioinformatics 21:2128-2129. https://doi.org/10.1093/bioinformatics/bti282
  15. Liu KJ, Goodman M, Muse S, Smith JS, Buckler ES, Doebley J. 2003. Genetic structure and diversity among maize inbred lines as inferred from DNA microsatellites. Genetics 165:2117-2128.
  16. Lu H, Bernardo R. 2001. Molecular diversity among current and historical maize inbreds. Theor. Appl. Genet. 103:613 -617. https://doi.org/10.1007/PL00002917
  17. Matsuoka Y, Mitchell SE, Kresovich S, Goodman M, Doebley J. 2002. Microsatellites in Zea-variability, patterns of mutations, and use for evolutionary studies. Theor. Appl. Genet. 104:436-450. https://doi.org/10.1007/s001220100694
  18. Nelson OE, Rines HW. 1962. The enzymatic deficiency in the waxy mutant of maize. Biochem. Biophys. Res. Commun. 9:297-300. https://doi.org/10.1016/0006-291X(62)90043-8
  19. Pejic I, Ajmone-Marsan P, Morgante M, Kozumplick V, Castiglioni P, Taramino G, Motto M. 1998. Comparative analysis of genetic similarity among maize inbred lines detected by RFLPs, RAPDs, SSR, and AFLPs. Theor. Appl. Genet. 97:1248-1255. https://doi.org/10.1007/s001220051017
  20. Pritchard JK, Wen W. 2003. Documentation for STRUCTURE software: Version 2.
  21. Rohlf FJ. 1998. NTSYS- pc: Numerical taxonomy and multivariate analysis system. Version: 2.02. Exeter Software, Setauket, New York.
  22. Senior ML, Murphy JP, Goodman MM, Stuber CW. 1998. Utility of SSRs for determining genetic similarities an relationships in maize using an agarose gel system. Crop Sci. 38:1088-1098. https://doi.org/10.2135/cropsci1998.0011183X003800040034x
  23. Smith JSC, Chin ECL, Shu H, Smith OS, Wall SJ, Senior ML, Mitchell SE, Kresovich S, Ziegler J. 1997. An evaluation of the utility of SSR loci as molecular marker in maize (Zea mays L.): comparison with RFLPs and pedigree. Theor. Appl. Genet. 95:163-173. https://doi.org/10.1007/s001220050544
  24. Sprague GF, Brimhall B, Hixon RM. 1943. Some effects of the waxy gene in corn on properties of the endosperm starch. J. Am. Soc. Agron. 35:817-822. https://doi.org/10.2134/agronj1943.00021962003500090008x
  25. Stich B, Melchinger AE, Frisch M, Maurer HP, Hecknberger M, Reif JC. 2005. Linkage disequilibrium in European elite maize germplasm investigated with SSRs. Theor. Appl. Genet. 111:723-730. https://doi.org/10.1007/s00122-005-2057-x
  26. Tian ML, Tan GX, Liu YJ, Rong TZ, Huang YB. 2009. Origin and evolution of Chinese waxy maize: evidence from the Globulin-1 gene. Genet. Resour. Crop Evol. 56:247-255. https://doi.org/10.1007/s10722-008-9360-8
  27. Wang ML, Zhu C, Barkley NA, Chen Z, Erpelding JE, Murray SC, Tuinstra MR, Tesso T, Pederson GA, Yu J. 2009. Genetic diversity and population structure analysis of accessions in the US historic sweet sorghum collection. Theor. Appl. Genet. 120:13-23. https://doi.org/10.1007/s00122-009-1155-6
  28. Wang R, Yu Y, Zhao J, Shi Y, Song Y, Wang T, Li Y. 2008. Population structure and linkage disequilibrium of a mini core set of maize inbred lines in China. Theor. Appl. Genet. 117:1141-1153. https://doi.org/10.1007/s00122-008-0852-x
  29. Xie CX, Warburton M, Li MS, Li XH, Xiao MJ, Hao ZF, Zhao Q, Zhang SH. 2008. An analysis of population structure and linkage disequilibrium using multilocus data in 187 maize inbred lines. Mol. Breed. 21:407-418. https://doi.org/10.1007/s11032-007-9140-8