튀김용 옥수수 자식계통들에 대한 유전적 변이성

Analysis of Genetic Variation Among Popcorn Inbred Lines by SSR Markers

  • 장진선 (강원도 농업기술원 옥수수시험장) ;
  • 장은하 (강원도 농업기술원 옥수수시험장) ;
  • 사규진 (강원대학교 농업생명과학대학 식물자원응용공학과) ;
  • 김종화 (강원대학교 농업생명과학대학 원예학과) ;
  • 이주경 (강원대학교 농업생명과학대학 식물자원응용공학과)
  • Jang, Jin-Sun (Maize Experiment Station, Kangwon Agricultural Research and Extension Services) ;
  • Chang, Eun-Ha (Maize Experiment Station, Kangwon Agricultural Research and Extension Services) ;
  • Sa, Kyu-Jin (Department of Applied Plant Sciences, College of Agriculture and life Sciences, Kangwon National University) ;
  • Kim, Jong-Hwa (Department of Horticulture, College of Agriculture and life Sciences, Kangwon National University) ;
  • Lee, Ju Kyong (Department of Applied Plant Sciences, College of Agriculture and life Sciences, Kangwon National University)
  • 투고 : 2011.07.30
  • 심사 : 2011.10.10
  • 발행 : 2011.12.30

초록

옥수수에서 자식계통들에 대한 유전적 다양성 및 계통유연관계 정보는 1대잡종 품종개발을 위한 교배조합 선발에 유용한 전략을 제공한다. 본 연구는 86개의 튀김 옥수수 자식계통들에 대한 유전적 다양성 및 계통유연관계를 밝히기 위하여 옥수수 전체 게놈을 대표할 수 있도록 50개의 SSR primer를 선발하여 분석에 이용하였다. 그 결과 50개의 SSR primer들은 86개의 튀김 옥수수 자식계통들에서 총 256개의 대립단편을 나타내었으며, SSR loci당 평균 5.1개가 증폭되었다. 각 SSR primer들에서 증폭된 대립단편의 수는 최소 2개에서 최대 16개의 범위로 나타났고, 유전적 다양성 값은 0.210에서 0.831 범위로 나타나 평균 0.579 값을 나타내었다. 계통유연관계 분석에서 86개의 튀김 옥수수 자식계통들은 유전적 유사성 35.8% 수준에서 크게 3개의 Group으로 구분되었는데, Group I은 40계통을, Group II는 39계통을, 그리고 Group III은 7계통을 각각 포함하였다. 본 연구에서 분석에 이용한 SSR 마커들은 우리나라에서 육성한 86개의 튀김 옥수수 자식계통들에 대한 유전적 다양성 및 계통유연관계를 평가하는데 효율적이었음을 나타내었다.

Knowledge of genetic diversity and genetic relationships among inbred lines gives a significant impact on the selection of parental lines for hybrid maize varieties. Genetic diversity and genetic relationships among 86 popcorn inbred lines were analyzed using 50 SSR markers distributed over the whole genome. A total of 256 alleles were identified at all the SSR loci with an average of 5.1 and a range between two and sixteen per locus. The gene diversity values varied from 0.21 to 0.831 with an average of 0.579. The cluster tree generated using the described SSR markers recognized three major groups at 35.8% genetic similarity. Groups I, II, III respectively included 40, 39 and 7 inbred lines. The present study indicates that the SSR markers chosen for this analysis are effective for the assessment of genetic diversity and genetic relationships among 86 popcorn inbred lines in Korea.

키워드

과제정보

연구 과제 주관 기관 : 농촌진흥청

참고문헌

  1. Akkaya MS., Bhagwat A.A., Cregan P.B. 1992. Length polymorphism of simple sequence repeat DNA in soybean. Genetics 132:1131-1139.
  2. Ajmone-Marsan P., Castiglioni P., Fusari F., Kuiper M., Motto M. 1998. Genetic diversity and its relationship to hybrid performance in maize as revealed by RFLP and AFLP markers. Theor. Appl. Genet. 96:219-227. https://doi.org/10.1007/s001220050730
  3. Dellaporta S.L., Wood J., Hicks J.B. 1983. A simple and rapid method for plant DNA preparation. Version II. Plant Mol. Biol. Rep. 1:19-21. https://doi.org/10.1007/BF02712670
  4. Dice L.R. 1945. Measures of the amount of ecologic association between species. Ecology 26:297-302. https://doi.org/10.2307/1932409
  5. Enoki H., Sato H., Koinuma K. 2002. SSR analysis of genetic diversity among maize inbred lines adapted to cold regions of Japan. Theor. Appl. Genet. 104:1270-277. https://doi.org/10.1007/s00122-001-0857-1
  6. Hallauer A.R., Russell W.A., Lamkey K.R. 1988. Corn breeding. pp 463-564. In G.F. Sprague and JW Dudley (ed). Corn and Corn Improvement. 3rd ed. Agron., Monogr. 18. Madison, WI, USA.
  7. Le Clerc V., Bazante F., Baril C., Guiard J., Zhang D. 2005. Assessing temporal changes in genetic diversity of maize varieties using microsatellite markers. Theor. Appl. Genet. 110: 294-302. https://doi.org/10.1007/s00122-004-1834-2
  8. Lee JK., Kim NH., Min HK., Kim NS. 2002. Genetic diversity and inter-relationships among maize inbred lines using MITE-AFLP. Korean J. Breed. 34(4): 356-362.
  9. Lu H., Bernardo R. 2001. Molecular marker diversity among current and historical maize inbreds. Theor. Appl. Genet. 103: 613-617. https://doi.org/10.1007/PL00002917
  10. Melchinger A.E., Lee M., Lamkey K.R., Hallauer A.R., Woodman W.L. 1990. Genetic diversity for restriction fragment length polymorphism and heterosis for two diallel sets of maize inbreds. Theor. Appl. Genet. 80:488-496.
  11. Nei M. 1973. Analysis of gene diversity in subdivided populations. Proc. Natl. Acad. Sci. USA. 70: 3321-3323. https://doi.org/10.1073/pnas.70.12.3321
  12. Pejic I., Ajmone-Marsan P., Morgante M., Kozumplick V., Castiglioni P., Taramino G., Motto M. 1998. Comparative analysis of genetic similarity among maize inbred lines detected by RFLPs, RAPDs, SSRs, and AFLPs. Theor. Appl. Genet. 97:1248-1255. https://doi.org/10.1007/s001220051017
  13. Park JS., Park JY., Park KJ., Lee JK. 2008. Genetic diversity among waxy cron accessions in Korea revealed by microsatellite markers. Korean J. Breed. 40(3):250-257.
  14. Powell W., Morgante M., Andre C., Hanafey M., Vogel J., Tingey S., Rafalski A. 1996. The comparison of RFLP, RAPD, AFLP and SSR (microsatellite) markers for germplasm analysis. Mol. Breed. 2:225-238. https://doi.org/10.1007/BF00564200
  15. Prasad M., Varshney R.K., Roy J.K., Balyan H.S., Gupta P.K. 2000. The use of microsatellites for detecting DNA polymorphism, genotype identification and genetic diversity in wheat. Theor. Appl. Genet. 100:584-592.
  16. Rohlf F.J. 1998. NTSYS-pc: Numerical taxonomy and multivariate analysis system. Version: 2.1. Exeter Software, New York.
  17. Russell J.R., Fuller J.D., Macaulay M., Hatz B.G., Jahoor A., Powell W., Waugh R. 1997. Direct comparison of levels of genetic variation among barley accessions detected by RFLPs, AFLPs, SSRs and RAPDs. Theor. Appl. Genet. 95:714-722. https://doi.org/10.1007/s001220050617
  18. Sa K.J., Park J.Y., Park K.J., Lee J.K. 2010. Analysis of genetic diversity and relationships among waxy maize inbred lines in Korea using SSR markers. Genes & Genomics 32: 375-384. https://doi.org/10.1007/s13258-010-0025-6
  19. Senior M.L., Chin E.C.L., Smith J.S.C., Stuber C.W. 1996. Simple sequence repeat developed from maize sequences found in the GenBank database: map construction. Crop Sci. 36:1676-1683. https://doi.org/10.2135/cropsci1996.0011183X003600060043x
  20. Senior M.L., Murphy J.P., Goodman M.M., Stuber C.W. 1998. Utility of SSRs for determining genetic similarities and relationships in maize using an agarose gel system. Crop Sci. 38:1088-1098. https://doi.org/10.2135/cropsci1998.0011183X003800040034x
  21. Smith J.S.C., Chin E.C.L., Shu H., Smith O.S., Wall S.J., Senior M.L., Mitchell S.E., Kresovich S., Ziegler J. 1997. An evaluation of the utility of SSR loci as molecular marker in maize (Zea mays L.): comparison with RFLPs and pedigree. Theor. Appl. Genet. 95:163-173. https://doi.org/10.1007/s001220050544
  22. Warburton M.L., Xianchun X., Crossa J., Franco J., Melchinger A.E., Frisch M., Bohn M., Hoisington D. 2002. Genetic characterization of CIMMYT inbred maize lines and open pollinated populations using large scale fingerprinting methods. Crop Sci. 42:1832-1840. https://doi.org/10.2135/cropsci2002.1832
  23. Xia X.C., Reif J.C., Melchinger A.E., Frisch M., Hoisington D.A., Beck K., Pixley K., Warburton M.L. 2005. Genetic diversity among CIMMYT maize inbred lines investigated with SSR markers: II. Subtropical, tropical midaltitude, and highland maize inbred lines and their relationships with elite U.S. and European maize. Crop Sci. 45:2573- 2582. https://doi.org/10.2135/cropsci2005.0246
  24. Xie C., Warburton M., Li M., Li X., Xiao M., Hao Z., Zhang S. 2008. An analysis of population structure and linkage disequilibrium using multilocus data in 187 maize inbred lines. Mol. Breeding 21:407-418. https://doi.org/10.1007/s11032-007-9140-8