DOI QR코드

DOI QR Code

산화에 의한 중공형 구리 산화물 나노입자 제조

Synthesis of Hollow Cu Oxide Nanoparticles by Oxidation

  • 이정구 (한국기계연구원 부설 재료연구소 기능재료연구본부) ;
  • 백연경 (한국기계연구원 부설 재료연구소 기능재료연구본부) ;
  • 정국채 (한국기계연구원 부설 재료연구소 기능재료연구본부) ;
  • 최철진 (한국기계연구원 부설 재료연구소 기능재료연구본부)
  • Lee, Jung-Goo (Functional Materials Division, Korea Institute of Materials Science) ;
  • Baek, Youn-Kyoung (Functional Materials Division, Korea Institute of Materials Science) ;
  • Chung, Kook-Chae (Functional Materials Division, Korea Institute of Materials Science) ;
  • Choi, Chul-Jin (Functional Materials Division, Korea Institute of Materials Science)
  • 투고 : 2011.08.12
  • 발행 : 2011.12.25

초록

In the present study, the formation of hollow Cu oxide nanoparticles through the oxidation process at temperatures from 200 to $300^{\circ}C$ has been studied by transmission electron microscopy with Cu nanoparticles produced by the plasma arc discharge method. The Cu nanoparticles had a thin oxide layer on the surface at room temperature and the thickness of this oxide layer increased during oxidation in atmosphere at $200-300^{\circ}C$ However, the oxide layer consisted of $Cu_2O$ and CuO after oxidation at $200^{\circ}C$ whereas this layer was comprised of only CuO after oxidation at $300^{\circ}C$ On the other hand, hollow Cu oxide nanoparticles are obtained as a result of vacancy aggregation in the oxidation processes, resulting from the rapid outward diffusion of metal ions through the oxide layer during the oxidation process.

키워드

과제정보

연구 과제 주관 기관 : 재료연구소

참고문헌

  1. Y. Yin et al., Science 304, 711 (2004). https://doi.org/10.1126/science.1096566
  2. J. M. D. Coey and H. Sun, J. Magn. Mater. 87, L251 (1990). https://doi.org/10.1016/0304-8853(90)90756-G
  3. Y. Otani, D. P. F. Hurley, H. Sun, and J. M. D. Coey, J. Appl. Phys. 69, 5584 (1991). https://doi.org/10.1063/1.347957
  4. M. Miyake, Catalysts & Catalysis 48, 604 (2006).
  5. L. I. Hung, C. K. Tsung, W. Huang, and P. Yang, Adv. Mater. 22, 1910 (2010). https://doi.org/10.1002/adma.200903947
  6. Y. S. Cho and Y. D. Huh, Bull. Korean Chem. Soc. 30, 1410 (2009). https://doi.org/10.5012/bkcs.2009.30.6.1410
  7. C. Lu, L. Qi, J. Yang, X. Wang, D. Zhang, J. Xie, J. Ma, Adv. Mater. 17, 2562 (2005). https://doi.org/10.1002/adma.200501128
  8. S. W. Kim, M. Kim, W. Y. Lee, and T. Hyeon, J. Am. Chem. Soc. 124, 7642 (2002). https://doi.org/10.1021/ja026032z
  9. Y. Sun and Y. Xia, J. Am. Chem. Soc. 126, 3892 (2004). https://doi.org/10.1021/ja039734c
  10. Y. Deng. L. Zhao, B. Shen, L. Liu, and W. Hu, J. Appl. Phys. 100, 014304 (2006). https://doi.org/10.1063/1.2210187
  11. J. Lee, K. Sohn, and T. Hyeon, J. Am. Chem. Soc. 123, 5146 (2001). https://doi.org/10.1021/ja015510n
  12. T. K. Mandal, M. S. Fleming, and D. R. Walt, Chem. Mater. 12, 3481 (2000). https://doi.org/10.1021/cm000514x
  13. C. Graf and A. Blaaderen, Langmuir 18, 524 (2002). https://doi.org/10.1021/la011093g
  14. Y. Yin, R. M. Robert, C. K. Erdonmez, S. Hughes, G. A. Somorjai, and A. P. Alivisatos, Science 304, 711 (2004). https://doi.org/10.1126/science.1096566
  15. R. Nakamura, J. G. Lee, D. Tokozakura, H. Mori, and H. Nakajima, Mater. Sci. Forum 544, 347 (2007).
  16. R. Nakamura, J. G. Lee, D. Tokozakura, H. Mori, and H. Nakajima, Mater. Lett. 61, 1060 (2007). https://doi.org/10.1016/j.matlet.2006.06.039
  17. R. Nakamura, D. Tokozakura, H. Nakajima, J. G. Lee, and H. Mori, J. Appl. Phys. 101, 074303 (2007). https://doi.org/10.1063/1.2711383
  18. R. Nakamura, D. Tokozakura, J. G. Lee, H. Mori, and H. Nakajima, Acta Mater. 56, 5276 (2008). https://doi.org/10.1016/j.actamat.2008.07.004
  19. J. Vejpravová et al., J. Appl. Phys. 97, 124304 (2005). https://doi.org/10.1063/1.1929849
  20. X. F. Zhang et al., Appl. Phys. Lett. 89, 053115 (2006). https://doi.org/10.1063/1.2236965
  21. Q. Zeng, I. Baker, J. B. Cui, and Z .C. Yan, J. Magn. Magn. Mater. 308, 214 (2007). https://doi.org/10.1016/j.jmmm.2006.05.032
  22. X. L. Dong, C. J. Choi, and B. K. Kim, Scr. Mater. 47, 857 (2002). https://doi.org/10.1016/S1359-6462(02)00304-4
  23. X. L. Dong, Z. D. Zhang, S.R. Jin, and B.K. Kim, J. Appl. Phys. 86, 6701 (1999). https://doi.org/10.1063/1.371747
  24. D. Vollath, J. Nanopart. Res. 10, 39 (2008). https://doi.org/10.1007/s11051-008-9427-7
  25. J. -G. Lee, P. Li, C. J. Choi, and X. L. Dong, Thin Solid Films 519, 81 (2010). https://doi.org/10.1016/j.tsf.2010.07.063
  26. J. -G. Lee, P. Li, X. L. Dong, and C. -J. Choi, Kor. J. Met. Mater. 48, 357 (2010). https://doi.org/10.3365/KJMM.2010.48.04.357
  27. S. Ram and C. Mitra, Mater. Sci. Eng. A 304, 805 (2001).
  28. V. R. Palkar, P. Ayyub, S. Chattopadhyay, and M. Multani, Phys. Rev. B 53, 2167 (1996). https://doi.org/10.1103/PhysRevB.53.2167
  29. L. Huang, F. Peng, H. Yu, and H. J. Wang, Solid State Sciences 11, 129 (2009). https://doi.org/10.1016/j.solidstatesciences.2008.04.013
  30. P. Kofstad, High-Temperature Oxidation of Metals, New York, p.41, John Wiley&Sons, Inc. (1966).
  31. N. Cabrera and N. F. Mott, Rept. Progr. Phys., 12, 163 (1948-49). https://doi.org/10.1088/0034-4885/12/1/308
  32. N. L. Peterson and C. L. Wiley, J. Phys. Chem. Solids 45, 281 (1984). https://doi.org/10.1016/0022-3697(84)90033-7
  33. W. J. Moore, Y. Ebisuzaki, and J. A. Sluss, J. Phys. Chem. 62, 1438 (1958). https://doi.org/10.1021/j150569a022
  34. W. J. Moore and E. L. Williams, Discussions Faraday Soc. 28, 86 (1959). https://doi.org/10.1039/df9592800086
  35. J. W. Hoffman and I. Lauder, Trans. Faraday Soc. 66, 2346 (1970). https://doi.org/10.1039/tf9706602346
  36. M. L. Gall and B. Lesage, Philos. Mag. A 70, 761 (1994).
  37. D. Prot. C. Monty, Philos. Mag. A 73, 899 (1996). https://doi.org/10.1080/01418619608243695