DOI QR코드

DOI QR Code

Fabrication of Fine-grained Molybdenum Sintered Body via Modified Sintering Process

소결 공정 개선을 통한 미세 결정립 몰리브덴 소결체 제조

  • Lee, Tae Ho (Department of Materials Science and Engineering, Hanyang University) ;
  • Kim, Se Hoon (Department of Materials Science and Engineering, Hanyang University) ;
  • Park, Min Suh (Department of Materials Science and Engineering, Hanyang University) ;
  • Suk, Myung Jin (Department of Materials & Metallurgical Engineering, Kangwon National University) ;
  • Kim, Young Do (Department of Materials Science and Engineering, Hanyang University)
  • 이태호 (한양대학교 신소재공학과) ;
  • 김세훈 (한양대학교 신소재공학과) ;
  • 박민서 (한양대학교 신소재공학과) ;
  • 석명진 (강원대학교 재료금속공학과) ;
  • 김영도 (한양대학교 신소재공학과)
  • Received : 2011.07.05
  • Published : 2011.11.25

Abstract

In this study, the fabrication of ultra fine grained Mo bulk was conducted. $MoO_3$ nanopowders were prepared by a high energy ball-milling process and then reduced at the temperature of $800^{\circ}C$ without holding time in $H_2$ atmosphere. The particle size of Mo nanopowder was ~150 nm and grain size was ~40 nm. The two-step process was employed for the sintering of Mo nanopowder to obtain fine grain size. The densification over 90% could be obtained by the two-step sintering with a grain size of less than 660 nm. For higher density, modified two-step sintering was designed. 95% of theoretical density with the grain size of 730 nm was obtained by the modified two-step sintering.

Keywords

References

  1. Wikipedia, Molybdenum, http://en.wikipedia.org/wiki/ Molybdenum (2011).
  2. J. Choi, Development and Production Process of Refractory Metals, p3-4, Korea Advanced Institute of Science and Technology, Daejeon, Korea (1988).
  3. Y. M. Kim, E.-P. Kim, S. Lee, and J.-W. Noh, J. Kor. Powder Metall. Inst. 14, 221 (2007). https://doi.org/10.4150/KPMI.2007.14.4.221
  4. M. Katayama and S. Kibe, Int. J. Impact Eng. 26, 357 (2001). https://doi.org/10.1016/S0734-743X(01)00106-3
  5. J. A. Shields Jr. and P. Lipetzky, Molybdenum Applications in the Electronics Market 52, 37 (2000).
  6. R. M. German and C. A. Labombard, Int. J. Powder Metall. Powder Technol. 18, 147 (1982).
  7. Y. Hiraoka, T. Ogusu, and N. Yoshizawa, J. Alloys Compd. 381, 192 (2004). https://doi.org/10.1016/j.jallcom.2004.03.112
  8. P. E. Zovas and R. M. German, Metal. Trans. A 15A, 1103 (1983).
  9. H. Hofmann, M. Grosskopf, M. Hofmann-Amtenbrink, and G. Petzow, Powder Metall. 29, 201 (1986). https://doi.org/10.1179/pom.1986.29.3.201
  10. S. L. Du, S. H. Cho, I. Y. Ko, J. M. Doh, J. K. Yoon, S. W. Park, and I. J. Shon, Kor. J. Met. Mater. 49, 231 (2011) https://doi.org/10.3365/KJMM.2011.49.3.231
  11. I. W. Chen and X. H. Wang, Nature 404, 168 (2000). https://doi.org/10.1038/35004548
  12. X. H. Wang, X. Y. Deng, H. L. Bai, H. Zhou, W. G. Qu, L. T. Li, and I. W. Chen, J. Am. Ceram. Sol. 89, 438 (2006). https://doi.org/10.1111/j.1551-2916.2005.00728.x
  13. X. H. Wang, P. L. Chen, and I. W. Chen, J. Am. Ceram. Soc. 89, 431 (2006). https://doi.org/10.1111/j.1551-2916.2005.00763.x
  14. G. K. Williamson and W. H. Hall, Acta Metal. 1, 22 (1953). https://doi.org/10.1016/0001-6160(53)90006-6
  15. B. D. Cullity, Elements of X-ray Diffration, Addison Wesley, (1978).
  16. S. H. Kim, Y. I. Seo, D. G. Kim, M. J. Suk, and .Y. D. Kim, J. Kor. Powder Metall. Inst. 17, 235 (2010). https://doi.org/10.4150/KPMI.2010.17.3.235
  17. S.H. Kim, D.-G. Kim, M.S. Park, Y.I. Seo, and Y.D. Kim, Met. Mater. Int. 17, 63 (2011). https://doi.org/10.1007/s12540-011-0209-x