DOI QR코드

DOI QR Code

Simulation Study on the Etching Mechanism of the Bosch Process

보쉬 공정의 식각 메커니즘에 대한 전산모사 연구

  • Kim, Chang-Gyu (Department of Materials Science and Engineering, KAIST) ;
  • Moon, Jae-Seung (Department of Materials Science and Engineering, KAIST) ;
  • Lee, Won-Jong (Department of Materials Science and Engineering, KAIST)
  • 김창규 (한국과학기술원 신소재공학과) ;
  • 문재승 (한국과학기술원 신소재공학과) ;
  • 이원종 (한국과학기술원 신소재공학과)
  • Received : 2011.02.14
  • Published : 2011.10.25

Abstract

In this study, the mechanisms of the three steps (the polymer deposition step, the polymer etching step and the Si etching step) that constitute the Bosch process were investigated. The effects of radicals and ions on each step were quantitatively analyzed by comparing the simulated aspect ratio dependency of the deposition or etch rate with the experimental results. In the polymer deposition step, fluorocarbon polymer is deposited by chemical reactions of $CF_x$ radicals, of which the reaction probability is 0.13. Although the polymer etching step and the Si etching step were conducted under the same conditions, the etching mechanisms of polymer and Si were found to be quite different. In the polymer etching step, both chemical etching and physical sputter-etching contribute to the polymer etching. Whereas, in the Si etching step, Si is chemically etched by F radicals, of which the reactivity is greatly increased by the bombardment of energetic ions.

Keywords

References

  1. F. Laermer and A. Schilp: U.S. Patent 5501893 (1996).
  2. M. S. Yoon, J. Microelectron. Pack. Soc. 16, 1 (2009).
  3. I. U. Abhulimen, S. Polamreddy, S. Burkett, L. Cai, and L. Schaper, J. Vac. Sci. Technol. B 25, 1762 (2007). https://doi.org/10.1116/1.2787869
  4. A. A. Ayon, R. Braff, C. C. Lin, H. H. Sawin, and M. A. Schmidt, J. Electrochem. Soc. 146, 339 (1999). https://doi.org/10.1149/1.1391611
  5. K. S. Kim, Y. C. Lee, J. H. Ahn, J. Y. Song, C. D. Yoo, and S. B. Jung, Kor. J. Met. Mater. 48, 1028 (2010). https://doi.org/10.3365/KJMM.2010.48.11.1028
  6. K. S. Chen, A. A. Ayon, X. Zhang, and S. M. Spearing, IEEE J. Microelectromech. Syst. 11, 264 (2002). https://doi.org/10.1109/JMEMS.2002.1007405
  7. R. Zhou, H. Zhang, Y. Hao, and Y. wang, J. Micromech. Microeng. 14, 851 (2004). https://doi.org/10.1088/0960-1317/14/7/003
  8. Y. Tan, R. Zhou, H. Zhang, G. Lu, and Z. Li, J. Micromech. Microeng. 16, 2570 (2006). https://doi.org/10.1088/0960-1317/16/12/008
  9. B. E. Volland, T. Ivanov, and I. W. Rangelow, J. Vac. Sci. Technol. B 20, 3111 (2002). https://doi.org/10.1116/1.1520572
  10. S. Rauf and P. L. G. Ventzek, J. Vac. Sci. Technol. A 20, 14 (2002).
  11. Y. -J. T. Lii and J. Jorne, J. Electrochem. Soc. 137, 2837 (1990). https://doi.org/10.1149/1.2087084
  12. V. S. Smentkowski, Prog. Surf. Sci. 64, 58 (2000).
  13. H. Yabe, A. Yuuki, and Y. Matsui, Jpn. J. Appl. Phys. 30, 2873 (1991). https://doi.org/10.1143/JJAP.30.2873
  14. B. E. Volland and I. W. Rangelow, Microelectron. Eng. 83, 1174 (2006). https://doi.org/10.1016/j.mee.2006.01.031
  15. D. Zhang and M. J. Kushner, J. Vac. Sci. Technol. A 19, 524 (2001). https://doi.org/10.1116/1.1349728
  16. M. Mozetic and A. Zalar, Vacuum 71, 233 (2001).
  17. M. A. Golub and T. Wydeven, Poly. Deg. Stab. 22, 325 (2001).
  18. D. S. Lee, Ph. D. Thesis, KAIST, Daejeon (2009).
  19. K. Ninomiya, K. Suzuki, S. Nishimatsu, and O. Okada, J. Appl. Phys 58, 1177 (1985). https://doi.org/10.1063/1.336133
  20. M. J. Vasile and F. A. Stevie, J. Appl. Phys. 53, 3799 (1982). https://doi.org/10.1063/1.331122
  21. D. Humbird and D. B. Graves, J. Appl. Phys. 96, 791 (2004). https://doi.org/10.1063/1.1753657
  22. J. L. Mauer, J. S. Logan, L. B. Zielinski, and G. S. Schwartz, J. Vac. Sci. Technol. 15, 1734 (1978). https://doi.org/10.1116/1.569836
  23. J. W. Coburn, H. F. Winters, and T. J. Chuang, J. Appl. Phys. 48, 3532 (1977). https://doi.org/10.1063/1.324150
  24. Y. Y. Tu, T. J. Chuang, and H. F. Winters, Phys. Rev. B 23, 823 (1981). https://doi.org/10.1103/PhysRevB.23.823