DOI QR코드

DOI QR Code

Optical Properties of Silicon Oxide (SiOx, x<2) Thin Films Deposited by PECVD Technique

PECVD 방법으로 증착한 SiOx(x<2) 박막의 광학적 특성 규명

  • Kim, Youngill (Department of Nano Science and Technology, University of Seoul) ;
  • Park, Byoung Youl (Department of Nano Science and Technology, University of Seoul) ;
  • Kim, Eunkyeom (Department of Nano Engineering, University of Seoul) ;
  • Han, Munsup (Department of Physics, University of Seoul) ;
  • Sok, Junghyun (Department of Nano Science and Technology, University of Seoul) ;
  • Park, Kyoungwan (Department of Nano Science and Technology, University of Seoul)
  • 김영일 (서울시립대학교 나노과학기술학과) ;
  • 박병열 (서울시립대학교 나노과학기술학과) ;
  • 김은겸 (서울시립대학교 나노공학과) ;
  • 한문섭 (서울시립대학교 물리학과) ;
  • 석중현 (서울시립대학교 나노과학기술학과) ;
  • 박경완 (서울시립대학교 나노과학기술학과)
  • Received : 2011.03.23
  • Published : 2011.09.25

Abstract

Silicon oxide thin films were deposited by using a plasma-enhanced chemical-vapor deposition technique to investigate the light emission properties. The photoluminescence characteristics were divided into two categories along the relative ratio of the flow rates of $SiH_4$ and $N_2O$ source gases, which show light emission in the broad/visible range and a light emission peak at 380 nm. We attribute the broad/visible light emission and the light emission peak to the quantum confinement effect of nanocrystalline silicon and the Si=O defects, respectively. Changes in the photoluminescence spectra were observed after the post-annealing processes. The photoluminescence spectra of the broad light emission in the visible range shifted to the long wavelength and were saturated above an annealing temperature of $900^{\circ}C$ or after 1 hour annealing at $970^{\circ}C$. However, the position of the light emission peak at 380 nm did not change at all after the post-annealing processes. The light emission intensities at 380 nm initially increased, and decreased at annealing temperatures above $700^{\circ}C$ or after 1 hour annealing at $700^{\circ}C$. The photoluminescence behaviors after the annealing processes can be explained bythe size change of the nanocrystalline silicon and the density change of Si=O defect in the films, respectively. These results support the possibility of using a silicon-based light source for Si-optoelectronic integrated circuits and/or display devices.

Keywords

Acknowledgement

Supported by : 한국연구재단

References

  1. L. Pavesi, J. Phys.: Condens. Matter 15, R1169 (2003). https://doi.org/10.1088/0953-8984/15/26/201
  2. D. A. B. Miller, Proc. IEEE 88, 728 (2000). https://doi.org/10.1109/5.867687
  3. D. J. Lockwood, Light Emission in Silicon: From Physics to Devices, (Academic Press, San Diego, 1997), Chapter 1.
  4. L. T. Canham, Nature (London) 408, 411 (2000). https://doi.org/10.1038/35044156
  5. L. Pavesi, L. Dal Negro, C. Mazzoleni, G. Franzo, and F. Priolo, Nature (London) 408, 440 (2000). https://doi.org/10.1038/35044012
  6. G. Davies, Phys. Rev. 176, 83 (1989).
  7. H. Z. Song, X. M. Bao, N. S. Li, and J. Y. Zhang, J. Appl. Phys. 82, 4028 (1997). https://doi.org/10.1063/1.365712
  8. J. F. Tong, H. L. Hsiao, and H. L. Hwang, Appl. Phys. Lett. 74, 2316 (1999). https://doi.org/10.1063/1.123836
  9. P. Steiner, F. Kozlowski, and W. Lang, Appl. Phys. Lett. 62, 2700 (1993). https://doi.org/10.1063/1.109236
  10. J. Linnros and N. Lalic, Appl. Phys. Lett. 66, 3048 (1995). https://doi.org/10.1063/1.114273
  11. K. D. Hirschman, L. Tsybeskov, S. P. Duttagupta, and P. M. Fauchet, Nature (London) 384, 338 (1996). https://doi.org/10.1038/384338a0
  12. P. Knapek, B. Rezek, D. Muller, J. J. Grob, R. Levy, K. Luterova, J. Kocka, and I. Pelant, Phys. Stat. Sol. A 167, R5 (1998). https://doi.org/10.1002/(SICI)1521-396X(199805)167:13.0.CO;2-Y
  13. L. T. Canham, Appl. Phys. Lett. 57, 1046 (1990). https://doi.org/10.1063/1.103561
  14. N. M. Park, S. H. Kim, G. Y. Sung, S. H. Choi, and S. J. Park, J. Kor. Phys. Soc. 42, S361 (2003).
  15. T. Y. Kim, N. M Park, K. H. Kim, G. Y. Sung, Y. W. Ok, T. Y. Seong, and C. J. Choi, Appl. Phys. Lett. 85, 5355 (2004). https://doi.org/10.1063/1.1814429
  16. K. S. Cho, N. M Park, T. Y. Kim, K. H. Kim, G. Y. Sung, and J. H. Shin, Appl. Phys. Lett. 86, 071909 (2005). https://doi.org/10.1063/1.1866638
  17. M. L. Brongersma, A. Polman, K. S. Min, E. Boer, T. Tambo, and H. A. Atwater, Appl. Phys. Lett. 72, 2577 (1998). https://doi.org/10.1063/1.121423
  18. F. Iacona, G. Franzo, and C. Spinella, J. Appl. Phys. 87, 1295 (2000). https://doi.org/10.1063/1.372013
  19. A. Irrera, D. Pacifici, M. Miritello, G. Franzo, F. Priolo, F. Iacona, D. Sanfilippo, G. Di Stefano, and P. G. Fallica, Appl. Phys. Lett. 81, 1866 (2002). https://doi.org/10.1063/1.1505117
  20. F. Iacona, C. Bongiorno, C. Spinella, S. Boninelli, and F. Priolo, J. Appl. Phys. 95, 3723 (2004). https://doi.org/10.1063/1.1664026
  21. Z. H. Lu, D. J. Lockwood, and J. M. Baribeau, Nature 378, 258 (1995). https://doi.org/10.1038/378258a0
  22. D. J. Lockwood, Z. H. Lu, and J. M. Baribeau, Phys. Rev. Lett. 76, 539 (1996). https://doi.org/10.1103/PhysRevLett.76.539
  23. O. Jambois, H. Rinnert, X. Devaux, and M. Vergnat, J. Appl. Phys. 98, 046105 (2005). https://doi.org/10.1063/1.2034087
  24. K. Murayama, T. Toyama, S. Miyazaki, and M. Hirose, Solid State Commun. 104, 119 (1997). https://doi.org/10.1016/S0038-1098(97)00253-6
  25. N. M. Park, C. J. Choi, T. Y. Seong, and S. J. Park, Phys. Rev. Lett. 86, 1355 (2001). https://doi.org/10.1103/PhysRevLett.86.1355
  26. V. Lehmann and U. Gosele, Appl. Phys. Lett. 58, 856 (1991). https://doi.org/10.1063/1.104512
  27. G. Allan, C. Delerue, and M. Lannoo, Phys. Rev. Lett. 78, 3161 (1977).
  28. B. Delley and E. F. Steigmeier, Appl. Phys. Lett. 67, 2370 (1995). https://doi.org/10.1063/1.114348
  29. C. Ko, J. Joo, M. Han, B. Y. Park, J. H. Sok, and K. Park, J. Korean Phys. Soc. 48, 1277 (2006).
  30. M. Wang, D. Li, Z. Yuan, D. Yang, and D. Que, Appl. Phys. Lett. 90, 131903 (2007). https://doi.org/10.1063/1.2717014
  31. S. Fujita and A. Sasaki, J. Electrochem. Soc. 132, 398 (1985). https://doi.org/10.1149/1.2113850
  32. W. L. Warren, P. M. Lenahan, and S. E. Curry, Phys. Rev. Lett. 65, 207 (1990). https://doi.org/10.1103/PhysRevLett.65.207
  33. T. Shimizu, J. Non-Cryst. Solids. 59, 117 (1983).
  34. C.-F. Lin, W.-T. Tseng, and M. S. Feng, J. Appl. Phys. 87, 2808 (2000). https://doi.org/10.1063/1.372260
  35. E. Holzenkampfer, F.-W. Richter, J. Stuke, and U. Voget- Grote, J. Non-Cryst. Solids. 32, 327 (1979). https://doi.org/10.1016/0022-3093(79)90080-2
  36. M. L. Brongersma, A. Polman, K. S. Min, E. Boer, T. Tambo, and H. A. Atwater, Appl. Phys. Lett. 72, 2577 (1998). https://doi.org/10.1063/1.121423
  37. F. Iacona, G. Franzo, and C. Spinella, J. Appl. Phys. 87, 1295 (2000). https://doi.org/10.1063/1.372013
  38. N. M. Park, S. H. Kim, G. Y. Sung, S.-H. Choi, and S.-J. Park J. Kor. Phys. Soc. 42, s361 (2003).
  39. X. Yang, X. L. Wu, S. H. Li, H. Li T. Qiu, Y. M. Yang, P. K. Chu, and G. G. Siu, Appl. Phys. Lett. 86, 201906 (2005). https://doi.org/10.1063/1.1931830
  40. S. H. Choi, R. G. Elliman, S. Cheylan, and J. P. D. Martin, Appl. Phys. Lett. 76, 2062 (2000). https://doi.org/10.1063/1.126255