DOI QR코드

DOI QR Code

고주파유도 가열에 의한 나노구조 Fe-Si3N4 복합재료의 합성 및 급속소결

Rapid Sintering and Synthesis of a Nanocrystalline Fe-Si3N4 Composites by High-Frequency Induction Heating

  • Ko, In-Yong (Division of Advanced Materials Engineering and Research Center of Industrial Technology, Engineering College, Chonbuk National University) ;
  • Du, Song-Lee (Division of Advanced Materials Engineering and Research Center of Industrial Technology, Engineering College, Chonbuk National University) ;
  • Doh, Jung-Mann (Division of Advanced Materials Engineering and Research Center of Industrial Technology, Engineering College, Chonbuk National University) ;
  • Yoon, Jin-Kook (Advanced Functional Materials Research Center, Korea Institute of Science and Technology) ;
  • Park, Sang-Whan (Advanced Functional Materials Research Center, Korea Institute of Science and Technology) ;
  • Shon, In-Jin (Division of Advanced Materials Engineering and Research Center of Industrial Technology, Engineering College, Chonbuk National University)
  • 투고 : 2011.04.04
  • 발행 : 2011.09.25

초록

Nanopowders of $Fe_3N$ and Si were fabricated by high-energy ball milling. A dense nanostructured $12Fe-Si_3N_4$ composite was simultaneously synthesized and consolidated using a high-frequency induction-heated sintering method for 2 minutes or less from mechanically activated powders of $Fe_3N$ and Si. Highly dense $12Fe-Si_3N_4$ with a relative density of up to 99% was produced under simultaneous application of 80 MPa pressure and the induced current. The microstructure and mechanical properties of the composite were investigated.

키워드

과제정보

연구 과제 주관 기관 : 지식경제부

참고문헌

  1. T. Murakami, S. Sasaki, K. Ichikawa, and A. Kitahara, Intermetallics 9, 621 (2001). https://doi.org/10.1016/S0966-9795(01)00042-5
  2. J. Karch, R. Birringer, and H. Gleiter. Nature 330, 556 (1987). https://doi.org/10.1038/330556a0
  3. A. M. George, J. Iniguuze, and L. Bellaiche, Nature 413, 54 (2001). https://doi.org/10.1038/35092530
  4. D. Hreniak and W. Strek, J. Alloys Comp. 341, 183 (2002). https://doi.org/10.1016/S0925-8388(02)00067-1
  5. E. S. Ahn, N. J. Gleason, A. Nakahira, and J. Y. Ying, Nano Lett. 241, 207(2002)
  6. Z. Fang and J.W. Eason, Int. J. Refrac. 13, 297 (1995). https://doi.org/10.1016/0263-4368(95)92675-A
  7. I.Y. Ko, B.R. Kim, K.S. Nam, B.M. M, B.S. Lee. and I.J. Shon, Met. Mater. Int. 15, 399 (2009). https://doi.org/10.1007/s12540-009-0399-7
  8. N.-R. Kim, K.-I. Na, W.B. Kim, S.-W. Chon, I.-J. Shon, Kor. J. Met. Mater. 48, 989 (2010). https://doi.org/10.3365/KJMM.2010.48.11.989
  9. Z. Shen, M. Johnsson, Z. Zhao, and M. Nygren, J. Am. Ceram. Soc. 85, 1921 (2002) . https://doi.org/10.1111/j.1151-2916.2002.tb00381.x
  10. J. E. Garay, U. Anselmi-Tamburini, Z. A. Munir, S. C. Glade, and P. Asoka- Kumar, Appl. Phys. Lett. 85, 573 (2004). https://doi.org/10.1063/1.1774268
  11. J. R. Friedman, J. E. Garay. U. Anselmi-Tamburini, and Z. A. Munir, Intermetallics. 12, 589 (2004). https://doi.org/10.1016/j.intermet.2004.02.005
  12. J. E. Garay, J. E. Garay. U. Anselmi-Tamburini, and Z. A. Munir, Acta Mater. 51, 4487 (2003). https://doi.org/10.1016/S1359-6454(03)00284-2
  13. H.L. Wang and M.H. Hon, Ceramics International 25, 267 (1999). https://doi.org/10.1016/S0272-8842(98)00035-2
  14. A. Vuckovic, V. Boskovic, and V. Krstic, Ceramics International 32, 303 (2006). https://doi.org/10.1016/j.ceramint.2005.02.015